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SZEREGOWANIE CYKLICZNE Z OGRANICZENIEM CZASÓW WYKONY-
WANIA

Streszczenie. Rozważany jest gniazdowy problem szeregowania cyklicznego.
Przedstawiono kilka szczególnych własności problemu. Poszukiwanie optymal-
nego harmonogramu przekształcono w problem poszukiwania optymalnej ko-
lejności wykonywania operacji. Wykorzystano w tym celu grafy. Rozpatrzono
i przedyskutowano zagadnienia: badania dopuszczalności, wyznaczania harmo-
nogramu dla ustalonej kolejności operacji, efektywnego poszukiwania przybliżo-
nej kolejności, wpływu czasów wykonywania na rozwiązanie. Fragmenty podejść
ilustrowano na przykładzie liczbowym.

CYCLIC SCHEDULING WITH LIMITED PROCESSING TIMES

Summary. We deal with the cyclic job-shop scheduling problem. We show a few
its special properties. We convert seeking the optimal schedule into problem of
seeking optimal sequence of operations by using graphs. There have been con-
sidered and analysed subjects: checking feasibility of the solution, finding the
schedule for fixed processing order of operations, efficient method of seeking
approximate sequence of operations, checking the influence of operations pro-
cessing times on the solution. Fragments of the approach have been illustrated by
an instance.

1. Introduction

Flexibility is one of the features enumerated for Industry 4.0, see the review of
problems identified in this research area [4]. Flexibility is perceived as, for example,
alternative routes for manufacturing products, various scenarios of making transport
activities, planning manufacturing products on request or on clients orders, adjusting
processing times to improve the efficiency of manufacturing and profits of the owner.

Up to now, we have considered several special problems raised in this area,
among others: fully automated and partially automated manufacturing systems without
or with limited human personnel, application of typically automated, cooperated trans-
port supporting system perceived as the fleet of Automated Guided Vehicles (AGV), see
for example [10, 17]. The fundamental aim of the AGV is to transfer a job (namely,
the semi-product or product) between machines. There are several various strategies of
implementing transport [1, 2]. In this paper we have assumed that each product has its
own unique technological route for processing. It means that there is no flexibility in the
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former (technological) meaning and in the later (transport) activities. On the other hand,
we are considering flexibility as well as an alternative transport strategies in the latter
meaning by admitting various workloads and routes of AGVs. Referring to the opti-
mization criterion, we are considered the cyclic schedule with the minimal cycle time
criterion as well as an approximation of minimal cycle time by the makespan. The paper
is an extension of recent works on cyclic scheduling, see for example achievements in
[3] and our works on this topic [6], [17].

2. The problem

We consider a general manufacturing system having the park of machines repre-
sented by the set M = {1, . . . ,m}, where m is the number of machines. The system
provides on the output in the cyclic manner (periodically) an mixed assortment of n
various products determined by the set N = {1, . . . , n}. Each product j ∈ N can be
perceived as a j-th production job and requires the predefined (fixed) sequence of nj
operations numbered successively by (lj−1 + 1, . . . , lj−1 + nj) which have to be per-
formed in this order, where lj =

∑j
s=1 ns, j = 1, . . . , n and l0 = 0. The modeling

technology commonly operates on the set of operations with precedence constraints

O =
n⋃
j=1

lj⋃
s=lj−1+1

{s}. (1)

instead of the set of jobs. We denote in the sequel o = |O| = ln. Operation i ∈ O has
to be performed on the machine νi in the unknown yet time pi, pi ¬ pi ¬ pi, where p

i
and pi are given bounds (pessimistic, optimistic). Additionally, the expected (suggested)
processing time is assumed to be known and is denoted by p̃i. The schedule is defined
by start times of operations S = (S1, S2, . . . , So) and processing times of operations
p = (p1, p2, . . . , po) which fulfill the technological routing constraints

Si + pi ¬ Si+1, i = lj−1 + 1, . . . , lj − 1, j = 1, 2, . . . , n (2)

as well as sequencing constraints for operations with conflicting resource requirements

(Si + pi ¬ Sk) ∨ (Sk + pk ¬ Si), νi = νk, i, k ∈ O. (3)

The optimization goal is to minimize the cycle time, which is defined as the period of
time between successive occurrence of the same operation. The approach proposed in
the paper refers also to the makespan as an auxiliary criterion.

3. Mathematical model

In order to define the solution as well optimization problem we use the modeling
technology introduced by us originally for the conventional job-shop scheduling pro-
blem [10, 11] and employed also for cyclic job-shop [13, 14, 15, 16]. It is known in the
literature for short as “permutation-and-graph”. It has been considered as the most ef-
ficient, moderate comfortable, and moreover yields the representation of solutions with
the smallest redundancy. The approach allows us to generate: schedule, graph for the
formulation of special properties and the method of finding minimal makespan as well
as cycle time. Details are given below.
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Set of operations O can be decomposed into subsets Ok = {i ∈ O : νi = k},
whereOk corresponds to operations which should be processed on machine k; we denote
further mk = |Ok|, k ∈ M. The processing order π of operations on all machines is
defined bym-tuple π = (π1, . . . , πm), where πk = (πk(1), . . . , πk(mk)) is a permutation
on Ok, k ∈ M; πk(i) denotes this element of Ok, which is on position i in πk. Let Πk
be the set of all permutations on Ok. Then π ∈ Π = Π1 × Π2 × . . . × Πm. Note
that, because of the feasibility condition, some π’s cannot be acceptable as the legal
solutions. In the sequel, we formulate a few conditions of feasibility depending of the
method of finding the minimal cycle time for a fixed processing order. Cyclic behavior of
the manufacturing system means that each machine k continuously repeats the sequence
πk, i.e. performs jobs in the following order πkπkπk . . ., for k ∈M. Cyclic schedule for
fixed processing order π can be described by the vector S = (S1, . . . , So) of operations’
starting times. In successive cycles, S is increased by a constant T called the cycle time.
Minimal cycle time for fixed π will be denoted by T (π). Our fundamental aim is to find
processing order π∗

T (π∗) = min
π
T (π), (4)

where minimization runs only over feasible π’s. It is clear that value of T (π) depends
on vector of variable processing times p = (p1, . . . , po), which has an influence on
the evaluation of the schedule value. Equation (4) implies an evident two-level solution
algorithm which seeks π on the upper level, whereas on the lower level finds T (π) for
each fixed π. Thus, we need to resolve several research tasks: (a) how to check feasibility
of π, (b) how to find T (π), (c) how to generate only feasible π. We consider these topics
hereinafter in details.

4. Linear Programming

In this section we provide the method of finding the schedule for the given π
by using LP (Linear Programming). Our aim in this case is to find schedule S =
(S1, S2, . . . , So), processing times p = (p1, p2, . . . , po) and the cycle time T > 0 for
fixed given π through solving the following LP task

T (π) = min
S,p,T
T (5)

with constraints

Si + pi ¬ Si+1, i = 1, . . . , nj, i = lj−1 + 1, . . . , lj − 1, j = 1, . . . , n, (6)

Sπk(i) + pπk(i) ¬ Sπk(i+1), i = 1, . . . ,mk − 1, k = 1, . . . ,m, (7)

Sπk(mk) + pπk(mk) ¬ Sπk(1) + T, k = 1, . . . ,m, (8)

p
i
¬ pi ¬ pi, i = 1, . . . , o, Si  0, i = 1, . . . , o, T  0. (9)

Inequalities (6) follow from technological route of jobs. Inequalities (7) follow from the
fixed sequence πk of operations on machines. Constraint (8) forces cyclic behaviour of
the schedule. Constraint (9) provides bounds on the decision variables. We say that π is
feasible if this LP problem has a finite solution (S, p, T ). Unfortunately, such method of
checking feasibility is too expensive in our opinion. On the other hand, LP belongs to
P-class, then one expects moderate efficiency of this approach in finding T (π). The first
found feature is: the minimal value of T is obtainable for pi = pi.
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5. Decomposition

This decomposition is oriented on the usage of graphs in order to find T (π).
Already in [16] it has been suggested a decomposition of the problem (5), namely

T (π) = min
T
(min
S,p
T ). (10)

In the considered case (10) is supplemented by constraints (6) – (9). Equation (10) en-
forces a two-level method of finding T (π) for the given π. Since the goal function (10)
remains constant for T , so the internal problem is to check whether exists or not exi-
sts for the given T feasible S, p satisfying constraints (6) – (9). As it was mentioned in
[16], in the context of metaheuristics, only T (π) is essential for the search over space
Π. Thus, we need to settle a few problems: (A) fast checking if for the given T exists
feasible S, p satisfying (6) – (9), (B) solving T (π) without LP. There are at least two
ideas for (A) – (B). The first approach seeks minimal T for which minS T < ∞ still
exists; any one-dimension minimization method can used in this aim, which means that
(A) needs to be applied many times, see [15] for details. The method has relatively large
pseudo-polynomial computational complexity. The second approach evaluates T (π) by
graph paths and applies (A) only once.

6. Graph models

We operate on two graphs. The first, planar graph G(π) is associated with clas-
sical job-shop scheduling problem for the set of operations O and is used to formulate,
among others, the sufficient condition for π to be feasible for this case of the job-shop,
see for example Fig. 1. Being more precisely, π is feasible if the graph G(π)

G(π) = (O,R∪ E(π)) (11)

where O is the set of nodes, andR∪ E(π) are sets of arcs

R =
n⋃
j=1

lj−1⋃
i=lj−1+1

{(i, i+ 1)}, E(π) =
m⋃
k=1

mk−1⋃
i=1
{(πk(i), πk(i+ 1))} (12)

has no cycles. Node i ∈ O represents in Activity-on-Node (AoN) description style
the operation i ∈ O and has weight pi = pi.Weight of the node has no meaning for
checking feasibility, but it is valid for calculation of the makespan. With the i-th node
we associate the event Si which denotes the earliest starting time of this operation. Arcs
from sets R as well as from the set E(π) have weight zero. Profits from the application
of the graph G(π) is as follows. Let us define length of a paths in G(π) between nodes i
and j (including pj) as

di,j = max
v∈Bj
di,v + pj, (13)

where Bj is the set of immediate predecessors of node j in G(π). The makespan is

Cmax(π) = max
j∈O
max
i∈Bj
di,j. (14)

Cmax(π) can be found inO(o) time by using conventional Bellman’s algorithm. Relation
between Cmax(π) and T (π) one can find in the following property; the proof will be
skipped because of the paper size.
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Property 1. Let κ = (κ1, . . . , κs), s ¬ m be the sequence so that κi ∈ M, κi ̸= κj ,
i, j = 1, . . . , s, i ̸= j, κs+1 ≡ κ1, dπκi(1),πκi+1(mκi+1) <∞, i = 1, . . . , s. Then we have

T (π) ¬ Cmax(π), T (π∗) ¬ Cmax(π∗) ¬ min
π∈Ω⊆Π

Cmax(π), (15)

and
T (π)  max

κ
Tκ  Tκ,|κ|=2  Tκ,|κ|=1 (16)

where
Tκ =

1
s

s∑
i=1
dπκi(1),πκi+1(mκi+1). (17)

Because the computational complexity of findingmaxκ Tκ from (16) is non-polynomial,
one can consider the limited sequences of κ, namely for s = 2, 1, see [16] for details,
leading to polynomial-time algorithm, but with weaker lower evaluation.

The second, non-planar graph H(π), will be used to find cyclic schedule S, p
having given correct value T (π) or its upper evaluation T  T (π). In order to cover all
possible cases of T , then the graph analysis for the value T < T (π) should provide the
answer that no feasible schedule exists. We define H(π) as follows

H(π) = (O,R∪ E(π) ∪ F(π)). (18)

where setsO,R, E(π) are the same that as for the graphG(π); the same are also the node
and arcs weights. The graph H(π) can be perceived as an extension of G(π) created by
adding set of additional arcs wrapping around the cylinder, see Fig. 1 (right). Set F(π)
closing up the cylinder is defined as follows

F(π) =
m⋃
k=1
{(πk(mk), πk(1))} (19)

where arc (i, j) ∈ F(π) has weight minus −T and represents preceding constraint (8).
We recall fundamental properties formulated previously, see [16]. They provide

necessary and sufficient conditions for π to create the feasible schedule. The former
states that “processing order π is feasible if and only if G(π) does not contain a graph
cycle and T is chosen so that H(π) does not contain graph cycle of positive length”.
The latter states that “If graph G(π) does not contain graph cycles, there always exists
feasible schedule S, p for this π and with minimal cycle time T (π)”.

Let us consider now the problem of finding S, p for fixed T  T (π) by using
H(π). With each node i ∈ O we associate the event Si having the sense of the longest
path length going to this node i, without this node weight. Notice, H(π) contains graph
cycles (they go around the cylinder one or several times) as well as positive and negative
weights on arcs. Therefore finding S, p can be perceived as certain labeling algorithm,
which assigns to nodes values satisfying constraints (6) - (8). Such labeling procedure
AC with the computational complexityO(o2) built on Bellman-Ford relaxation has been
proposed in [16]. Paper [16] also provided the advanced version of AC called AC∗ which
runs in shorter time O(mo).

7. Instance

For the Instance from Tab. 1 and processing order

π = ((10, 2, 8, 6), (4, 11, 3, 9), (7, 1, 12, 5)) (20)
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Tabela 1
Illustrative instance

job operation machine p
i

p̃i pi pi

0 ← l0
1 1 3 35 61 75 59
1 2 1 39 67 83 65
1 3 2 72 96 108 94 ← l1
2 4 2 65 89 95 86
2 5 3 48 56 88 60
2 6 1 5 10 15 10 ← l2
3 7 3 40 48 62 49
3 8 1 38 42 52 43
3 9 2 4 8 12 8 ← l3
4 10 1 47 75 79 71
4 11 2 16 24 38 25
4 12 3 88 96 116 98 ← l4

Rys. 1. Graphs G(π) (left) and H(π) (right).

graph G(π) is shown in Fig. 1 (left), whereas H(π) in Fig. 1 (right). Arcs from R are
drawn by solid line, arcs from E(π) by dashed line, arcs from F(π) by dotted line.

Applying graph G(π) for processing order (20) and fixed p we obtain Cmax(π) =
289 with S = (49, 108, 173, 0, 219, 279, 0, 173, 216, 0, 86, 111). Applying graph H(π),
for fixed p (see last column in the table), we seek with the help of AC proce-
dure [15] the minimal value of T so that H(π) does not contain cycle of positi-
ve length. This condition is fulfilled for T = 272 but not for T < 272. Thus
T (π) = 272  Cmax(π). Starting initially Si = 0, i = 1, 2, . . . , o we finally get
S = (49, 108, 173, 3, 212, 272, 0, 173, 267, 10, 89, 114) from the analysis of paths in
this graph. Evaluation of T (π) appeared in the Property 1 provides Tκ,|κ|=1 = 266 and
Tκ,|κ|=2 = 272. Note that solution of LP task also provides T (π) = 272.
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8. Proposed approach

The solution algorithm is “hybrid” and contained two phases. In the first phase,
we seek for the feasible approximate solution πA of the problem with the makespan cri-
terion, namely Cmax(πA) = minπ∈Ω⊆ΠCmax(π), see (15). To this aim algorithms TSAB
[10] or i-TSAB [11] are recommended. Since the processing times are variable, therefo-
re in order to speed up the search process and eliminate the influence of these variables
on the choice of πA, we assume that the processing time pi is fixed and approximated by

pi =
p
i
+ 4p̃i + pi
6

. (21)

where evaluations are: p
i

– optimistic, pi – pessimistic and p̃i – average.
The second phase employs inequality T (πA) ¬ Cmax(πA), see (15). In this phase

we solve only once the problem (5)–(9) for π = πA. This can be done either by solving
appropriate LP task or by seeking T  T (π), see (16), for which graphH(π) is feasible.
Such the approach ensures a balance between calculation cost and quality of obtained
solution.

9. Conclusion

Properties have been designed in order to find or, at least evaluate, the minimal
cycle time T (π) for the given job processing order π without necessity of solving au-
xiliary LP task or even without necessity of generating the exact schedule S, p. In this
paper we propose and discuss an approach which allow us to reduce the size of the LP
problem as well as the size of graph model due to skillful relaxation and aggregation
of jobs. This reduction moves the appropriate LP graph model from pseudo-polynomial
time complexity to polynomial time complexity. These findings extend significantly for-
mer results, found so far in our research, see [15]. All properties can be built into co-
nventional metaheuristic approaches, e.g Simulated Annealing (SA), Tabu Search (TS),
Evolutionary Search (EA) with particular evaluation of a processing order during the
run. Actually, one can perform the complex procedure of finding the exact schedule on-
ly for final processing order generated by the output of local optimization algorithm.
Note, T (π) can be found more efficiently than LP task by using special graphs, being
the extension of graphs formulated originally for the conventional job-shop scheduling
problem. The computational experiments is the natural continuation of the research.
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