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Streszczenie. Rozważany problem dotyczy dwukierunkowej jednotorowej linii
kolejowej. Naturalnie jednotorowa linia kolejowa powoduje to, że pociągi po-
dróżujące w obu kierunkach muszą się wymijać i zatrzymywać na stacji. Każda
stacja ma ograniczoną przepustowość, określoną pojemność definiującą ile pocią-
gów w danym momencie może się na niej znajdować. Celem pracy jest określenie
cyklicznego harmonogramu z maksymalizacją pociągów dla danych parametrów
linii kolejowej to znaczy liczby stacji, pojemności tych stacji oraz czasu przejaz-
du pomiędzy poszczególnymi stacjami. Metody optymalizacji oparte na symu-
lacji służą do znalezienia cyklicznego uszeregowania pociagów, z jednej strony
wykorzystującego maksymalną przepustowość linii w obu kierunkach, a z drugiej
respektującego ograniczenia dotyczące czasów przejadów pomiędzy stacjami, ja-
ki i pojemności tych stacji. Na koniec można zbudować model symulacyjny auto-
matycznego generowania rozkładów jazdy, uwzględniający schematy planowania
cyklicznego ruchu pociągow i określić horyzont czasowy takiego cyklu.

CYCLIC SINGLE TRACK RAILWAY SCHEDULING PROBLEM BY SIMULA-
TION

Summary. Considered problem involves a single-track railway line that connects
multiple stations. Trains can travel in both directions along the track, but sin-
ce there’s only one track, they must wait for avoiding collisions and deadlocks.
The objective of the scheduling problem is to determine the cyclic schedule with
trains maximization for the given set of the railway parameters like stations ca-
pacity and traveling time between them. Simulation-based optimization methods
use to simulate train movements for the particular line and stations capacities.
Optimization algorithms are then used to find the effective schedule based on the
simulation results. In this paper, the case of models of STRSP are considered and
analyzing them from both the station capacity point of view and the maximal
number of trains that can be scheduled for the given single-track railway lines.
Finally, one can construct a simulation model that automatically generates time-
tables for trains, including cyclic train scheduling cases in the minimum cycle
time horizon.



186 G. Pawlak

1. Introduction

The motivation for research on the single track scheduling problem often comes
from real-world applications. Such as the transportation of coal from mines to a harbor
in the case of the Australian railway as a practical example. Therefore, finding optimal
solutions to the single track scheduling problem is an important research topic with prac-
tical implications. The increasing demand for iron ore or coal forces practitioners and
researchers to find more effective train network transporting for goods from the mains
to the harbor [4]. For the quite old railway infrastructure with single line tracks increase
transport efficiency it is a challenge. Then, the goal is to find the maximum number of
the trains traveling in both directions. From the one side the effective solution assumes to
solve the trains scheduling problem, on the other hand the practical application require
the cyclic timetable in the specified time horizon. The time table form a kind of the train
traveling "patterns" dependent on the lines parameters such as the number of stations in
the line, the stations capacities and the traveling times between the stations.

The classical Single Track Railway Scheduling Problem (STRSP) is largely ela-
borated in the literature. The research are conducted in the area for a long time. One
of the first results on the subject was presented by Szpigel in [5]. The problem arises
when a set of trains need to travel along a single track with limited stations capacity. It
is complicated by the fact that trains traveling in opposite directions cannot pass each
other, and the number of trains that can be accommodated at each station is limited by
the station’s capacity. For the general case, the problem is NP-hard, from the complexity
point of view.

One can distinguish the two ways of the modeling and solving such a problems.
First to construct dedicated solutions adjusted to the particular lines and local circum-
stances. This approach requires considering many detailed parameters and constructed
solution could be effective but for the static system and very specific dedicated assump-
tions. Such a solutions are vulnerable for the small changes and do hardly construct
robust methods. Moreover, it requires continuous and constant customization. Usually,
they give the accurate results but with significant runtime of the algorithms. The exam-
ple of the efficient scheduling of trains on a single track with limited stations capacity is
crucial for the safe and reliable operation of railway systems. The problem has applica-
tions in various fields, including transportation, logistics, and supply chain management.
As a result, there is a literature on the single track scheduling problem, including various
algorithms and models for solving it [2]. In practice, there are many factors that need
to be taken into account when scheduling trains for transporting goods, such as the ca-
pacity of the stations, the speed and weight of the trains, the availability of tracks, the
weather conditions, and the safety and reliability of the system [6]. To solve the classical
single track scheduling problem, various optimization techniques can be used, such as
mathematical programming, simulation, or heuristics. The optimal solution depends on
the specific constraints and objectives of the problem, such as minimizing travel time,
maximizing train throughput, or ensuring safety and reliability [4, 2, 6].

On the other hand the most general models are considered for the more dynamic
systems, where the environment is changing. One can find the limitations of the parti-
cular railway lines. Moreover, the practically interested problem can be formulated, for
example,as to change the line by infrastructure modifications and investments. A key
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factor in the problem is the maximum throughput rate, which is the maximum number
of trains that can pass through a stations for the particular time horizon. This rate is
limited by the station’s capacity and the speed of the trains, among other factors. The
scheduling efficiency of the system depends on how well the maximum throughput rate,
for the given cycle time, is utilized.

Then the simulation technique that uses computer models to simulate an ope-
rations of the railway system and evaluate different scheduling scenarios. Simulation
can provide parameters and insights into system performance and help identify potential
bottlenecks and improvements for dynamic and varying environment.

The paper considers some models and formulates capacity station dependencies.
The approach considers the "topology" of the single railway line defined as: the train
capacity in the stations, the number of the stations in the line and the distances between
them. Then the interesting problem is the maximization of the trains traveling in both di-
rections and construction of the cyclic timetable. The results can be utilized for practical
"what-if" analysis, where the lines are described by the number of stations, total travel
time, and travel time between stations. The changes on the line and train parameters
may cause the bottlenecks which should be avoided and the estimation of the maximum
trains traveling in the cycle scheduling for the given time horizon.

2. Problem Formulation and Models

We are attempting to determine the maximum number of trains that can travel
from the starting station to the ending station and back within a given time frame. That
number can be treat as an upper bound of the train number for the general case. Let us
define:

Ts as the time at which the first train begins its journey. Tf as the time at which
the last train completes its journey. We will be examining journeys that take place within
the time interval [Ts, Tf ], subject to the following assumptions:

• The time taken to travel between neighboring stations is constant and is denoted
by ti,j .

• It is possible for at least one train to travel between any two stations within a given
time.

• The start station (s) and the end station (e) have infinite capacity, denoted by cps
and cpe respectively.

2.1. Train maximization problem
One can define the following:
B - the length of the railway from the starting station to the ending station. There

are a total ofB+1 stations, including the starting and ending stations. Hence, the ending
station is denoted by e = B + 1.

T - the length of the time interval being considered, where T = Tf − Ts.
there are interested to findingmaxR(B,T ), which is the maximum number of tra-

ins that can travel the distance B within the given time T .
There may be generated several models for the same physical railway system.

The travel times can differ, for example, by applied maintenance cases and potential
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Rys. 1. Single line model

changes in the station capacity (considered investments). The station capacity it is the
maximum number of trains which could be accommodated by the particular station. For
a single track line that parameter specifies the fact that the trains can cross traveling in
opposite directions and defines the number of trains circulating in the system. In the
terminus cases if for all stations the cpi = 1, form the line where the trains can travel
only in one direction from source to final station (for both the train capacity is infinite)
and then all traveling back. On the other hand, if all capacities are infinite (not used in
practical case) then trains can cross on each stations cf. Fig. 1.
2.2. Minimization of the total traveling time model with finite capacities

This model aims to minimize the total traveling time subject to finite capacities
at each station.

Under above assumptions, one can formulate the following objective function for
the particular model as a calculated sub-problem:

min
ni,j

e−1∑
i=1

e∑
j=i+1
ni,j(ti,j + tj,i) (1)

This function minimizes the total traveling time of all trains on the railway. The
variables are the number of trains n traveling between each pair of stations (i, j) with
capacity constraints the number of trains arriving at any station i cannot exceed its ca-
pacity cpi, where i = 1, 2, . . . , e. For the possible stations’ capacity changes the total
completion times can be represented as:

i−1∑
j=1
nj,i −

e∑
j=i+1
ni,j ¬ cpi, i = 1, 2, . . . , e (2)

These constraints ensure that the number of trains traveling between each pair of
stations does not exceed their capacity, and the total time taken by all trains does not
exceed the time interval T .

Station capacity dependencies can be formulated as follows:
cpi: the capacity of intermediate station i (i.e., the maximum number of trains

that can be on the station at the same time), which is assumed to be finite. Our objective
is to find the minimal cpi for each station i ∈ 2, 3, . . . , e− 1 that allows the maximum
number of trains to pass through within the given time.

The greedy strategy that gives always priority to the train that goes first, causing
delays 0, 1, 2... respectively to the following trains provides such upper bound. One is
able to present patterns that results with a sum of times equal to this bound or lower.

Let’s denote:
tsi−time train i departures from starting station s, tsi ∈ {0, 1...};
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tfi−time train i reaches back the station s,
so ci = tfi − tsi .
We can observe differences in tsi between these patterns.
tsi = i for i < B and tsi = 2(i− 1) + 1 for i ­ B;
whereas:
tsi = i,
but in both cases tfi = 2B + 2(i− 1) and ci ¬ 2B + i− 1.

Note that any additional wait of the first train enlarges
R∑
j=1
cj (as it enlarges tfi for

some i, without changing tsi).
It can be observe in the pattern presented below, that results with:

min
j

R∑
j=1
c
(3)
j ¬ minj

R∑
j=1
c
(2)
j ¬ minj

R∑
j=1
cj (3)

The consequences are that one can expect that the higher capacity of the stations
can shorten the cycle of the trains traveling. Later the simulation shows that the bottle-
necks in the trains capacity and traveling times between stations can be crucial to achieve
the effective cyclic trains timetable.

3. Algorithmic Simulation Model

In order to implement a simulation algorithmic solution for the models described
above, it is necessary to address the bottleneck problem. There are several methods to
avoid bottlenecks, the one is chosen as to reserve at least one unit of capacity on stations
where the capacity is greater than one.

Stations with a capacity equal to one can be effectively reduced from the line, and
the travel times in neighboring stations with capacities greater than one are increased
accordingly.

The simulation then calculates a feasible solution and generates a cyclic timetable
for the trains.

The algorithm takes also into account potential collisions and conflicts in the
trains traffic. The all possible collisions in such a system where described previously in
literature [3] and where implemented to the simulator. In the system in all lines where
applied an integer values of travel times.

The algorithm generates an effective cyclic train timetable, as illustrated in the
examples in Fig. 2 and 3. To perform a WHAT-IF analysis, one can manipulate the
stations capacity parameter and the traveling times, to determine the optimal increase in
capacity for a given instance of the railway line. The software simulation package was
prepared in [1] and several experiments were performed.

On the Fig. 2 and Fig. 3 on the vertical axis there is the single line definition
instance with the stations and travel time units between them. Because trains travel in
both directions there mirroring the stations with the end of the line as a pivot. The trains
journey is depicted in the line where horizontal lines identifies the stations and time
units is running on axis X . In the Fig. 2 the five stations line was shown with a travel
times [1, 2, 3, 1, 1] respectively, the total cycle time in that case was equal to 16 and the
theoretical trains density in the line was calculated as 0, 315. One can observe the pattern
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Rys. 2. Example of time-table solution produced by the simulation.

Rys. 3. Example of time-table solution produced by the simulation.

in the time table after 16 time units the time table is repeating and the continuous cyclic
train scheduling was constructed. For this particular case there is the optimal cycle.

Similarly, there is shown the second example see Fig. 3 where the line consists
four stations with a travel times [2, 4, 2] respectively, with the total cycle time also equal
to 16. One can observe that the traffic in that example is less dense so the density para-
meter is equal to 0, 1875 trains for a time. Adequate to the previous example, the cyclic



Cyclic Single Track Railway Scheduling Problem 191

train schedule was constructed.

4. Conclusions

Overall, the single track train scheduling problem with limited station capacity
is a complex optimization problem that requires careful consideration of many factors,
including train speeds (caused for example by the maintenance), stations capacities, and
safety constraints. By using appropriate optimization techniques, it is possible to find an
optimal solution that minimizes travel time while cycle time and efficient train opera-
tions.

The simulation algorithmic model generating the effective cyclic time-tables had
been presented. The simulations models can identify the single track railway lines limi-
tations and potential bottlenecks in relatively easy and fast way. Moreover, the methods
could be used for the very speculative WHAT-IF analysis for many alternatives.

Having such a tool one can easy perform and evaluate the several tests for the
practical cases. Then it is not difficult to get the general picture of the train transporta-
tion system with the structural limitations of the particular lines. The achieved simula-
tions results can be also used for the preprocessing or bounding parameters for the more
sophisticated methods and models.
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