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AUTOMATYCZNA ANALIZA KART KONTROLNYCH SHEWHARTA Z
WYKORZYSTANIEM UCZENIA MASZYNOWEGO

Streszczenie. W artykule pokazano, ze wykorzystanie sztucznej inteligencji w
kontroli jakoSci produkcji usprawnia monitorowanie i zwigksza czgstotliwos¢é
probkowania, umozliwiajac analiz¢ wigkszej liczby cech w czasie rzeczywistym.
W wysokowydajnej produkcji matoseryjnej tradycyjne podejsScie do analizy kart
Shewharta, oparte na ludzkiej percepcji, jest zawodne. W artykule oceniono mod-
ele uczenia maszynowego (m. in. Linear Regression, Support Vector Machine,
Decision Forest, and Deep Neural Network) zaimplementowane w Pythonie do
automatycznej analizy kart Shewharta. Modele zostaly przetestowane na danych
z rzeczywistych produkcyjnych o wysokiej produktywno$ci. Wyniki zostaty
przeanalizowane 1 ustandaryzowane, a nastgpnie wyznaczono najskuteczniejszy
model uczenia maszynowego dla tego problemu.

AUTOMATED ANALYSIS OF SHEWHART CONTROL CHARTS USING MA-
CHINE LEARNING

Summary. This paper shows that using artificial intelligence in quality con-
trol for manufacturing improves monitoring and increases sampling frequency,
enabling real-time analysis of more features. In high-productivity, small-batch
production, the traditional approach to Shewhart chart analysis, reliant on hu-
man perception, is unreliable. The paper evaluates Machine Learning models
(Linear Regression, Support Vector Machine, Decision Forest, and Deep Neural
Network) implemented in Python for automated Shewhart chart analysis. Tested
on real production data, the models’ results were analyzed to identify the most
effective Machine Learning model for this application.

1. Introduction

In light of the multifaceted nature and growing complexity of challenges faced by
contemporary businesses, it is crucial to carefully select methods that support decision-
making at both strategic and operational levels [13, 7, 5]. Among traditional tools
that significantly enhance the performance of production processes are Shewhart con-
trol charts, widely utilized within Statistical Process Control (SPC) [11]. These charts
aim to distinguish between natural process variability and unnatural variability by ana-
lyzing signals emitted by sensors with which the production line is equipped. Signals
are generated in two primary ways: (1) when a measurement exceeds a control limit,
or (2) when a non-random pattern, such as a specific sequence or trend, is observed on
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the chart. Given the infinite number of potential non-random patterns, correctly iden-
tifying them can be challenging. Consequently, control charts may be less effective at
promptly detecting small process shifts or gradual changes, potentially leading to delays
in identifying issues and implementing corrective actions. Moreover, high natural pro-
cess variability or the presence of disruptions can further complicate the detection of true
changes in process status. However, advances in technology present new opportunities.
This article explores how the application of machine learning (ML) can improve sig-
nal detection, providing more advanced and effective tools for analyzing and optimizing
manufacturing processes.

The paper is organized as follows: in Section 2. the research gap is determined
based on the literature review. In Sections 3. and 4. the need for automated recognition
of Shewhart control chart is explained accompanied with a potential for using ML clas-
sifiers to recognize certain sequences. Finally in Section 5., the directions of the future
research are determined.

2. Positioning of the paper — automated process control

The challenge of rapidly detecting specific sequences in control charts has
evolved significantly since their inception, largely due to advancements in computational
power. The proliferation of machine learning (ML) techniques, driven by technological
progress, has led to their widespread adoption in control chart analysis, as reflected in
numerous scientific studies.

A notable example is the control chart monitoring system proposed by Cuentas
and Garcia [4] which utilizes a hybrid approach combining support vector machines
(SVMs) with a genetic algorithm (GA) to detect and classify abnormal patterns in au-
tocorrelated manufacturing processes. This system highlights the importance of opti-
mizing key parameters, such as input feature vectors, classifier hyperparameters, and
analysis window size. The integration of GA in the early stages of the system’s design
introduced challenges related to this optimization process, which will be explored in
further detail later in this paper.

In contrast, Tran et al. [12] conducted a systematic review of the application of
various artificial intelligence (AI) techniques to control charts in manufacturing, offering
a valuable case study on the use of machine learning-based control charts for detecting
anomalies, such as bearing failures. Their work highlights the growing integration of
Al in Statistical Process Control (SPC) and its potential to enhance anomaly detection
and demonstrates a valuable case study of such an approach in practice. On the other
hand, Cheng et al. [3] addressed the challenges that hinder the practical application
of machine learning for control chart pattern recognition (CCPR). They proposed uti-
lizing a one-dimensional convolutional neural network (1D-CNN) that learns features
directly from raw data, thus eliminating the need for traditional feature engineering.
Their study provides an in-depth examination of the network architecture design, hyper-
parameter tuning, and the methods employed to generate diverse datassets, which collec-
tively contribute to building a robust classification model. This research underscores the
importance of model architecture and dataset diversity in advancing ML-based CCPR
solutions.

Yeganeh and Shadman [14] introduced an innovative approach to monitoring lin-
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ear profiles through the development of a novel control chart that incorporates artificial
neural networks (ANNSs) in conjunction with run rules. Their work significantly en-
hances the performance of traditional control charts by improving the accuracy of signal
emission and reducing the time required for change detection. Similarly, Bersimis et
al. [2] advanced the field by proposing a robust meta-method for interpreting out-of-
control signals in multivariate control charts. Their approach leverages ANNs to iden-
tify specific process variables responsible for deviations, transforming existing analytical
techniques into more effective diagnostic tools for detecting process abnormalities. In
parallel, Shao and Hu [10] explored the utility of various machine learning classifiers,
including ANNSs, support vector machines, extreme learning machines, and multidimen-
sional adaptive regression splines, for the recognition of complex mixture control chart
patterns within a multiple-input multiple-output (MIMO) process. Their findings high-
light the potential of these classifiers to enhance pattern recognition efficiency, further
contributing to the advancement of control chart methodologies.

Similarly, Zan et al. [15] proposed the use of a one-dimensional convolutional
neural network (CNN) for effective sequence detection in control chart pattern recogni-
tion, demonstrating the potential of deep learning techniques in improving monitoring
processes. Additionally, other significant contributions to the field include the work of
Hsu et al. (2020), who applied statistical process control and machine learning for wind
turbine fault diagnosis and predictive maintenance, highlighting the integration of SPC
with modern Al techniques in industrial applications. Abbas et al. [1] contributed by im-
proving nonparametric control charts within simple and ranked set sampling schemes,
providing advancements in nonparametric methods for more accurate process control.
Furthermore, Shao ef al. [9] introduced a two-stage neural network-based classifier for
the identification of mixture control chart patterns within a statistical process control-
engineering process control (SPC-EPC) framework, further extending the capabilities of
neural network-based approaches in complex process monitoring.

The work presented in this paper highlights the ongoing advancements in control
chart analysis, with a particular focus on the incorporation of modern machine learning
methods. The integration of these cutting-edge techniques has led to more efficient and
rapid anomaly detection, which is essential for the optimization of production processes
and the enhancement of quality management. These developments underscore the im-
portance of leveraging artificial intelligence to improve the precision and responsiveness
of control systems in industrial settings.

3. Automated Statistical Process Control

The primary objective of Statistical Process Control is to enhance processes to
the point where error identification and correction become unnecessary, as errors are
eliminated at their root. This leads to improved product quality, reduced waste, and
lower inspection costs through continuous process improvement. A fundamental prin-
ciple of SPC lies in distinguishing between the types of deviations that occur within a
process. Some deviations are caused by random factors, which are typically beyond our
control. These factors result from a complex interplay of numerous "common" or "ran-
dom" influences, most of which are minor and difficult to trace. For example, variations
in product quality may arise from random changes in atmospheric pressure, temperature



168 R. Ksiazek, R. Kaptan, K. Gdowska, P. F.ebkowski

fluctuations, machine vibrations, humidity shifts, or even changes in workers’ physi-
cal conditions. Such factors are analogous to those influencing the outcome of a coin
toss—where the underlying randomness prevents precise identification of individual in-
fluences. When random factors predominate, the process is deemed "stable" or "under
statistical control". Conversely, deviations caused by identifiable and significant factors
are classified as "special". These "special causes" lead to notable deviations, indicating
that the process is "unstable" or "out of statistical control." Identifying and addressing
these special causes is crucial for restoring process stability and maintaining quality.

Control charts, introduced by Walter A. Shewhart in the 1920s [11], are pivotal
tools for distinguishing between random variation and special causes of variation in in-
dustrial processes. Among the most commonly employed control charts are those that
simultaneously monitor multiple statistical parameters, such as the mean and the range
of a process. The methodology for utilizing control charts involves systematically plot-
ting data on a graph and analyzing key statistical metrics, including the mean, median,
or range. When a control chart identifies deviations from established norms, it serves
as an indicator of potential disruptions in the process. This detection marks the initial
phase in a systematic approach to identifying and mitigating the root cause of the process
disturbance. Despite their utility, the analysis of control charts can present challenges,
particularly in identifying subtle sequences or trends. There are instances where control
charts may not exhibit any overt anomalies, yet hidden patterns or subtle disturbances
might still be present and necessitate thorough examination. Figures 1-3 provide illus-
trative examples of such scenarios, highlighting the complexities and potential issues
associated with sequence detection in X-R control charts.

Figure 1 displays a conventional X-R control chart, which, upon initial inspec-
tion, appears to show no data points crossing the control limits. However, a more metic-
ulous examination may uncover subtle sequences or trends that are not immediately
apparent. Such nuances could potentially indicate underlying issues that warrant closer
scrutiny, as these subtle deviations might be easily overlooked in a cursory review.

A detailed examination of the control chart presented in Figure 22 reveals a sig-
nificant sequence: specifically, a run of 7 or more consecutive points falling below the
average, beginning with sample number 11. Identifying such sequences is critical for
promptly detecting and addressing potential disruptions in the production process, as
they may signal underlying issues that could affect process stability and quality.

Figure 3 illustrates a more intricate scenario involving two distinct sequences on
the same control chart. In addition to the previously noted sequence of points below
the mean, this chart also reveals a pattern where 4 out of the subsequent 5 points are
located beyond 1 sigma, beginning with point 54. The presence of these overlapping
sequences creates complex interference patterns that can be challenging to detect man-
ually. Consequently, the use of automated detection and analysis tools is often essential
for accurately identifying and interpreting such nuanced variations in the control chart
data.

Although the sequences identified in control charts and other potential patterns
may suggest the influence of special factors on the process, their effective detection
hinges on timely signal reception and accurate interpretation by the operator. Rapid
identification and contextual understanding of these sequences are critical for effective
quality management and intervention in production processes. Despite the human eye’s
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Fig. 2. Detecting a single sequence

capability to recognize patterns, it can easily overlook subtle nuances, particularly under
time constraints. The task of detecting such sequences often requires repeated, precise
analysis, which can be challenging in a dynamic production environment. The complex-
ity increases when multiple disturbances appear simultaneously on a single control chart,
making manual detection and response difficult. In this context, the integration of ma-
chine learning technologies offers a promising solution. Machine learning algorithms
can automate the detection of sequences and deviations in control charts, facilitating
quicker and more accurate identification of disruptions. This technological approach en-
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X-bar Chart with Additional Control Signals
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Fig. 3. Detecting multiple sequences

hances the ability to respond promptly to process degradation, thereby improving overall
quality management and process control.

4. Applying Machine Learning to Automated Analysis of Shewhart Control Charts

The data used in the computations consist of a set of 100,000 observations, each
comprising 7 consecutive samplings from a control chart. This control chart was de-
veloped as a sequence of 100,000 consecutive samplings, generated randomly under the
assumption that valid samples follow a standard normal distribution. In addition to the
valid samples, the control chart included specifically selected sampling points intended
to simulate irregularities in the production process. These points were designed to test
whether the individual responsible for monitoring the measurements could detect the
onset of process disruptions.To generate sequences of measurements indicating abnor-
mal observations, three fundamental criteria were applied to signal the disjointedness or
instability of the analyzed process [8]:

e | point more than 3 standard devations from centraline;
e 7 points in a rowts in a row on same side of centerline;
e 6 points in a row, all increasing or all decreasing.

These criteria were chosen to effectively simulate and detect potential disruptions in the
production process, ensuring that the data set could be used to evaluate the performance
of the binary classifiers under different conditions of process stability and irregularity.

When comparing different machine learning algorithms, the quality, consistency,
and representativeness of the data are paramount, overshadowing the specific type of
control charts used. Machine learning algorithms are fundamentally designed to ana-
lyze underlying data structures and recognize patterns, irrespective of the data’s origin
or presentation format. Consequently, while control charts are a critical tool in process
monitoring, the efficiency and accuracy of the algorithm depend more on the robust-
ness and quality of the data itself rather than the particular control chart format. The
focus should thus be on ensuring that the data used for training and testing accurately
represents the conditions and variability of the process being analyzed.
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The analysis was performed using three selected binary classifiers, implemented
with the sklearn library version 1.0.2 and the Python 3 programming language. Fol-
lowing the training of these classifiers, their performance was assessed through testing
and evaluation. The classifiers used in the computations were trained with the default
hyperparameter settings as specified by the sklearn library. Computational experiments
were conducted using ten selected binary classifiers:

e SGDClassifier (SGD) from sklearn.linear_model

e LogisticRegression (LG) from sklearn.linear_model

e SVM (SVC) from sklearn.svm

e LinearSVC (LSVC) from sklearn.svm

e RandomForestClassifier (RFC) from sklearn.ensemble

e ExtraTreesClassifier (ETC) from sklearn.ensemble

e GradientBoostingClassifier (GBC) from sklearn.ensemble
e AdaBoostClassifier (ABC) from sklearn.ensemble

e DecisionTreeClassifier (DTC) from sklearn.tree

e BernoulliNB (BNB) from sklearn.naive_bayes

Figure 4 presents the control chart developed as described, illustrating the first
50 samples from the complete set of 100,000 samples. Within this figure, three groups
of points are highlighted, corresponding to the specific methods used to mark detected
defects on the control chart, as previously discussed. Additionally, Table 1 provides a
summary of the numerical values associated with these 50 samples, offering a detailed
representation of the data presented in the chart.
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The dataset developed for testing the usefulness of the machine learning classifier
is constructed from consecutive observations, each representing a window of 7 succes-
sive points taken from the sequence of samples recorded on the control chart (see Figure
4). For each set of 7 successive samples, a label of ’1” or ’0’ is assigned, based on de-
tecting defects using one of the three selected rules. A label of 1’ indicates potential
process degradation, while a label of "0’ signifies that the process is stable. Table 2 il-
lustrates the first 40 elements of this dataset, each of them is a window of 7 successive
points. Each row in the table corresponds to a sequence of 7 consecutive points from the
samples displayed on the control chart in Figure 4, with a label assigned according to
the established criteria. For instance, the observation in the first row of Table 2 does not
show any signs of a defect in the production process, and thus is labeled 0’. However,
advancing the 7-point window by one sample reveals the beginning of a potential de-
fect or corruption of the process, as this sequence meets the second criterion—where 7
consecutive points lie on the same side of the centerline. Consequently, this observation
is labeled ’1°. This approach ensures that the developed dataset comprehensively cap-
tures sequences indicative of both stable and degraded processes, allowing the applied
machine learning classifier to learn from various scenarios.

Table 1
Initial samplings

No. Value |No. Value |No. Value |No. Value |No. Value
1 1.13 11 -1.15 |21 0.19 |31 0.06 |41 -0.05
2 -1.84 |12 -0.75 |22 -1.19 |32 0.83 |42 0.35
3 -0.14 |13 0.09 |23 1.79 |33 -1.27 |43 -1.19
4 -0.35 |14 097 |24 -0.30 |34 -049 |44 -1.50
5 -0.70 |15 -0.05 |25 -0.32 |35 -0.07 |45 0.15
6 -1.14 |16 -0.33 |26 -0.85 |36 0.86 |46 0.07
7 -0.62 |17 093 |27 0.51 37 0.88 |47 1.14
8 -0.36 |18 -1.59 |28 -1.37 |38 1.19 |48 1.49
9 -0.39 |19 -0.36 |29 -0.33 |39 1.21 49 0.83
10 -0.14 |20 -3.29 |30 0.24 |40 1.60 |50 -0.62

The input dataset X and corresponding label set y were randomly partitioned
into two subsets: a training dataset X’ with labels ¢/, comprising 80% of the total data,
and a testing dataset X'*s! with labels y'**!, containing the remaining 20%. In both the
training and testing datasets, the proportion of labeled defects was carefully maintained
at approximately 30% of all observations to ensure consistency.

To evaluate the performance of the trained classifiers, the fl1-score was primarily
used as the key metric. The f1-score integrates two important aspects of classifier per-
formance: precision and recall. Precision measures the classifier’s ability to correctly
identify positive cases (i.e., defects), while recall assesses its ability to capture all ac-
tual positive cases. The fl-score, as a harmonic mean of these two metrics, provides a
balanced evaluation, particularly relevant for defect detection on control charts, where
both precision and recall are critical. Relying solely on accuracy, which calculates the
proportion of correctly classified observations out of the total, may be misleading in this
context. Given the class imbalance in the dataset, a classifier could achieve high accu-
racy by predominantly predicting the majority class (non-defects), without effectively
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Table 2
Initial observations from the dataset used to teach and evaluate the selected classifiers
No. X Y
1 2 3 4 5 6 7
1 1.13 -1.84 -0.14 -0.35 -0.70 -1.14 -0.62 0
2 -1.84 -0.14 -0.35 -0.70 -1.14 -0.62 -0.36 1
3 -0.14 -0.35 -0.70 -1.14 -0.62 -0.36 -0.39 1
4 -0.35 -0.70 -1.14 -0.62 -0.36 -0.39 -0.14 1
5 -0.70 -1.14 -0.62 -0.36 -0.39 -0.14 -1.15 1
6 -1.14 -0.62 -0.36 -0.39 -0.14 -1.15 -0.75 1
7 -0.62 -0.36 -0.39 -0.14 -1.15 -0.75 0.09 0
8 -0.36 -0.39 -0.14 -1.15 -0.75 0.09 0.97 0
9 -0.39 -0.14 -1.15 -0.75 0.09 0.97 -0.05 0
10 -0.14 -1.15 -0.75 0.09 0.97 -0.05 -0.33 0
11 -1.15 -0.75 0.09 0.97 -0.05 -0.33 0.93 0
12 -0.75 0.09 0.97 -0.05 -0.33 0.93 -1.59 0
13 0.09 0.97 -0.05 -0.33 0.93 -1.59 -0.36 0
14 0.97 -0.05 -0.33 0.93 -1.59 -0.36 -3.29 1
15 -0.05 -0.33 0.93 -1.59 -0.36 -3.29 0.19 1
16 -0.33 0.93 -1.59 -0.36 -3.29 0.19 -1.19 1
17 0.93 -1.59 -0.36 -3.29 0.19 -1.19 1.79 1
18 -1.59 -0.36 -3.29 0.19 -1.19 1.79 -0.30 1
19 -0.36 -3.29 0.19 -1.19 1.79 -0.30 -0.32 1
20 -3.29 0.19 -1.19 1.79 -0.30 -0.32 -0.85 1
21 0.19 -1.19 1.79 -0.30 -0.32 -0.85 0.51 0
22 -1.19 1.79 -0.30 -0.32 -0.85 0.51 -1.37 0
23 1.79 -0.30 -0.32 -0.85 0.51 -1.37 -0.33 0
24 -0.30 -0.32 -0.85 0.51 -1.37 -0.33 0.24 0
25 -0.32 -0.85 0.51 -1.37 -0.33 0.24 0.06 0
26 -0.85 0.51 -1.37 -0.33 0.24 0.06 0.83 0
27 0.51 -1.37 -0.33 0.24 0.06 0.83 -1.27 0
28 -1.37 -0.33 0.24 0.06 0.83 -1.27 -0.49 0
29 -0.33 0.24 0.06 0.83 -1.27 -0.49 -0.07 0
30 0.24 0.06 0.83 -1.27 -0.49 -0.07 0.86 0
31 0.06 0.83 -1.27 -0.49 -0.07 0.86 0.88 0
32 0.83 -1.27 -0.49 -0.07 0.86 0.88 1.19 0
33 -1.27 -0.49 -0.07 0.86 0.88 1.19 1.21 1
34 -0.49 -0.07 0.86 0.88 1.19 1.21 1.60 1
35 -0.07 0.86 0.88 1.19 1.21 1.60 -0.05 1
36 0.86 0.88 1.19 1.21 1.60 -0.05 0.35 0
37 0.88 1.19 1.21 1.60 -0.05 0.35 -1.19 0
38 1.19 1.21 1.60 -0.05 0.35 -1.19 -1.50 0
39 1.21 1.60 -0.05 0.35 -1.19 -1.50 0.15 0
40 1.60 -0.05 0.35 -1.19 -1.50 0.15 0.07 0
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identifying defects. Therefore, the Fl-score is a more robust measure for evaluating
classifier performance in this scenario, as it addresses the trade-off between precision
and recall, ensuring a more accurate assessment of the classifier’s effectiveness.

Table 3
Results of performance evaluation of individual classifiers

Name Label Precision |Recall f1-score Accuracy

SGD 0 0.711 1.000 0.836 0.711
1 1.000 0.000 0.000

LR 0 0.715 1.000 0.833 0.716
1 1.000 0.016 0.033

SVC 0 0.934 0.970 0.952 0.930
1 0918 0.832 0.873

LSVC 0 0.714 1.000 0.833 0.715
1 1.000 0.011 0.023

DTC 0 0.985 0.984 0.984 0.978
1 0.961 0.964 0.962

RFC 0 0.989 0.993 0.991 0.987
1 0.983 0.972 0.977

ETC 0 0.973 0.987 0.980 0.972
1 0.968 0.933 0.950

GBC 0 0.871 0.995 0.929 0.891
1 0.982 0.636 0.772

ABC 0 0.824 0.990 0.900 0.843
1 0.955 0.479 0.638

BNB 0 0.786 1.0 0.880 0.806
1 1.0 0.330 0.496

The results for the various performance metrics derived from computations are
presented in Table 3. For each of the ten classifiers studied, precision, recall, f1-score,
and accuracy values are provided for both labels (’0O’ for a stable process and ’1’ for
process degradation). Analyzing the evaluation metrics reveals that classifiers utiliz-
ing linear decision boundaries in the feature space, such as Stochastic Gradient Descent
(SGD), Logistic Regression (LR), and Linear Support Vector Classifier (LSVC), per-
formed poorly. Their practical application in this context would likely offer minimal
benefit due to their inability to capture the complexities of the data. In contrast, the
best results were achieved with classifiers based on decision tree algorithms, specifi-
cally Decision Tree Classifier (DTC), Random Forest Classifier (RFC), and Extra Trees
Classifier (ETC). These models demonstrated strong performance and their promising
results indicate they would be well-suited for implementation in a real-world quality
control system. It is important to note that the calculations were performed using the
default hyperparameter settings for each classifier. Fine-tuning these hyperparameters
could potentially enhance the models’ ability to detect defects using control charts, lead-
ing to even better performance in practical applications.
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5. Conclusions

The application of machine learning techniques to analyze control charts in qual-
ity management represents a significant advancement over traditional methods that rely
on human judgment. The primary advantage of these techniques lies in their ability to
efficiently process large datasets and accurately recognize complex patterns that may be
imperceptible to the human eye. This capability enables faster detection and response to
potential deviations in the manufacturing process, thus enhancing overall process con-
trol. In the analysis conducted, the authors employed ten binary classifiers using the
sklearn library. These classifiers were trained with default hyperparameter settings and
subsequently tested to evaluate their effectiveness. The results of this analysis highlight
the substantial potential of machine learning techniques in quality control, particularly
those classifiers utilizing Decision Tree Classifier, Random Forest Classifier, and Extra
Trees Classifier. These models demonstrated strong performance in detecting anomalies
on control charts, and their effectiveness could be further improved through hyperparam-
eter optimization. Sequence detection on Shewhart control charts plays a crucial role in
quality management, as it enables continuous process monitoring and real-time prob-
lem prevention. By accurately analyzing these sequences, organizations can maintain
process continuity and ensure high standards of products and services.

In conclusion, this analysis underscores the value of machine learning techniques
as powerful tools for examining control chart data. These algorithms not only detect in-
dividual deviations but also identify persistent trends that may indicate more significant
issues in the future. As such, machine learning offers a robust approach to enhancing
quality management through improved control chart analysis.
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