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DISCRETE-TIME FEEDBACK STABILIZATION

Summary. This paper presents an algorithm for designing dynamic compensator
for infinite-dimensional systems with use of finite dimensional approximation.
The proposed method was then implemented in order to find the control function
for thin rod heating process. The optimal sampling time was found depending on
discrete output measurements.

DYSKRETNE STABILIZUJACE SPRZEZENIE ZWROTNE

Streszczenie. Artykutl prezentuje algorytm projektowania kompensatora
dynamicznego dla ukladow nieskonczenie wymiarowych wykorzystujac
skonczenie wymiarowa aproksymacje. Nastepnie, zaproponowany algorytm
zostal zaimplementowany do sterowania procesem nagrzewania preta oraz
doboru optymalnego kroku dyskretyzacji kompensatora przy zatozeniu
dyskretnego pomiaru na wyjsciu.

1. Introduction

One of the main areas of automatic control is connected with stabilization
problems. Usually, in real time application, an algorithm consisting of two stages is
used: 1. Bring the system to the valid region of linearization. 2. Stabilize the system
using linear approximation. This approach is justified by topological similarity of
nonlinear system and its linearization (valid only for hyperbolic systems without
purely imaginary eigenvalues).

Feedback design (design of the stabilizing controller) depends on the system’s
form (usually we have either differential equations or transfer function for time
independent systems).

The design of finite dimensional feedback is useful due to multiple reasons: 1. It
is possible to use simple, finite-dimensional methods, e.g., Lyapunov functions and in
consequence, Lyapunov equations strictly linked with algebraic Riccati equations. 2.
Some of the systems have predefined structure, e.g., the hoisting machine (long line is
a distributed system, and the drive may be modeled with finite-dimensional system).

The design of finite-dimensional controllers for infinite systems with finite set of
unstable modes (or at least weakly damped ones) is widely analyzed in literature. This
class of the systems was described by Triggiani (1975), or even earlier by Fattorini
(1967). Using small disturbance methods and building appropriate invariant sets,
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Schumacher (1981, 1983) proposed finite dimensional stabilizing controllers for
distributed and delayed systems. Similar results were obtained by Curtain (1984) for
parabolic systems with infinite input-output operators. Also the works of Curtain and
Salomon (1986), and Sakawa (1983, 1984, 1985) are worth noticing. Balas (1983)
proposed a finite dimensional dynamic compensator for finite dimensional
approximations of infinite systems. Similar methods were proposed by Kobayashi
(1983). Gibson (1981) used finite dimensional approximation of algebraic Riccati
equation. The detailed description of those works was done, e.g., by Mitkowski (1991)
with 229 books and articles analyzed.

The design of stabilizing controllers is still an interesting problem (see, e.g.
Przyluski (2014)), especially as there are more efficient numerical tools. Thanks to
computers, nowadays, we can analyze complex mathematical models, e.g. of non-
integer order Podlubny (1999), Das (2008), Caponetto (2010), Kaczorek (2011),
Skruch (2013), Obraczka (2014) which sometimes better describe the real system.

In this work, we focused on an algorithm of stabilization of linear infinite
dimensional system with finite set of instable modes (weakly damped) using finite
discrete stabilization. As an example, we used diffusion equation which models the
heating process of a thin rod.

2. Problem description

A simplified model of feedback system S (with continuous time) is depicted in

the figure 1.
u (1) (1)
SYSTEM
4' CONTROLLER Ii

Fig. 1. Closed-loop system

Finite dimensional stabilization problem: for a given infinite system S find a
stabilizing controller (finite dimensional) such that the closed-loop system is
exponentially stable with predefined damping coefficient.

In digital control, it is necessary to use a discrete system (computer or other
device with discrete time). In order to use a discrete stabilizing controller in
continuous time system, we need to use the system (see fig 2.) in form of a series of
pulser, continuous system S, and ZOH with input u(k) and output y(k), k=1,2,3, ...
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Fig. 2. Continuous-discrete system

If the pulser and ZOH work synchronously with time step A>0, then the
parameters of discrete system S denoted for simplicity with 4, B, C are given by the

formulas calculated on the basis of continuous system:
h

A=e", BzzjeA’Bdt, C=C (1)
0
For a valid controller (both continuous and discrete), we need the controllability
and observability of continuous system S. The conditions for time step h>0 which
guarantee that the discrete system is also controllable and observable are known and
may be found, e.g., in Mitkowski (1991, p. 141).

3. The decomposition of the system

There is a group of infinite dimensional systems which can be stabilized with use
of finite dimensional methods. Let us now consider a system
x(t) = Ax(t)+ Bu(t), y(t)=Cx(¢)
x()eX, u@)eU, y@)eY ' (2)
For further use we will denote it as S(4,B,C). Let us now assume that (2) fulfills the
following conditions:
e X Y,U- Hilbert spaces, dimU <+, dimY <+,
e A is an infinitesimal generator Cy of semi-group Ta(t), for >0 in X
e Bel(U,X), CelL(X,Y) are bounded
e A is a discrete operator with finite number of eigenvalues with Res> [,
f <40

Taking into account the conditions above, we can decompose (2) into (Triggiani
1975):

xl(t) Al 0 0 xl(t) Bl
@ [=0 A4, 0 || x,@)|+]|B,|u(®), (3)
5@ |0 0 4 |x@]| |B

3

y(t) = Cix, (1) + C,x, (1) + Cyx, (1),

xeX,i=123 X=X+X,+X,,

dim X, <400, dimX, = p < +o. (4)
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The spectrum of (2) is depicted in the figure 3. The operator A4; is responsible for
unstable (or weakly damped) part of the system. The operators A4; and A4, are
exponentially stable.

Fig. 3. Discrete spectrum of (2)

Let us now add the following assumptions
e sup{Res:sel(4,)<0, sup{Res:sel (4,)}=y<0

e The pair (A,B)) is controllable, The pair (C;,A,) is observable
e dimX,=p—+w = |B|—>0and |C,|—0.

The last assumption is fulfilled if, e.g., self-adjoint generator has compact resolvent
(the eigenvectors form a basis of the given space).

4. Finite-dimensional stabilizing controller

Let us now consider dynamic feedback Mitkowski [1991, s. 233] of form:

W] [4-GC+BK -GC,Tw®] [6
{wz(z) = BK, 4, w0 o @, (5)
u(t)= Klwl 1), w, (H)e Xz" i=12.

Let us assume that the conditions mentioned in previous section are fulfilled.
There exists a finite dimensional stabilizing controller (5), such that the closed-loop
system (2) with (5) is exponentially stable with predefined damping coefficient
ae(y,0). See (Sakawa 1983 [29]) and Mitkowski [1982, 1986, 1988], Mitkowski

[1991, s. 230]) for further details.

The design of feedback (5) may be reduced to finding the matrices K, and G,
which can be done using methods known from finite dimensional systems’ analysis,
e.g., LQ design. The desired damping coefficient ae(y,0) can be found by increasing
p=dimX,.

A discrete version of the controller (Mitkowski [1991, s. 236]) can be obtained
using formulas (1) and remembering that the system is asymptotically stable if the
eigenvalues lie inside the unit circle (assumption 4 and 5, and fig 3). The matrices K; i
G, should be found in a way that guarantees that the eigenvalues of matrices 4;+B;K;
and 4;-G,C; lie inside the unit circle (for example, we can set them as zeros).
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5. Stabilization of finite dimensional discrete approximation of the model

For design of closed-loop control system with use of simulation methods, we
approximate the system (3) with finite dimensional approximation. We replace the
operator A3 with matrix A; of appropriate dimensions (depending on desired accuracy
of approximation). This algorithm will be now illustrated with laboratory experiment
(Oprzedkiewicz 2003).

The continuous finite dimensional system S(A,B,C,D) with matrices A,B,C, D
may de transformed to a discrete system S'(A", B", C*, D"). In numerical approach,
the system S” is called differential scheme of continuous system S. The design of
stabilizing discrete controller is now equivalent to design a closed loop system with S”.
The parameters of S* can de described with Tustin method (Astrom 1990, Bini 2014,
see also Mitkowski 1991, p. 142, with Newton-Cotes formula),

A" :(I+ﬁA)(I—ﬁA)’1, B*=A4"(A4"-1)B,
2 2 (6)

cC'=C, D'=D
The Tustin differential scheme has the following property: the discrete system S* is
asymptotically stable if and only if the system S is asymptotically stable (the

eigenvalues of A are in left half-plane). The inverse matrix A" in (6) exists if the
system S is asymptotically stable (but might be weakly damped).

6. Example

Let us now consider the process of heating a thin rod (Oprzedkiewicz [2001,
2003]) depicted in the figure 4.

- I;I*y
AV AV
Heater Temperature sensor

Fig. 4. Heating of a thin rod.

A simplified mathematical model of the analyzed process has the form

ox(z,t) 4 0’x(z,1)

—R x(z,t) +b(2)u(t), t=0, ze[0,1],

ot 622
0x(z,t) _ ox(z,t) =0, t>0,
= | = | (7

x(z,0)0=0, ze(0,1),
1

y(t) = J.c(z)x(z, t)dz.

0
where
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1 for 0<z<z
b(z) =
0 for z,<z<l1

0 for 0<z<z and z,<z<I

¢ for z<z<z
c(z)=

x(z0) = Y%, (Oh (2)

i=0
After the decomposition, we have S(4,B,C,D) where
A=diag(A,, A, As......), B=[by b b, ....... f,
C=[cycicy.un. 1, D=0,

and

X=LI0O,LR), A=-i"m’a—R,, i=01,2,....

. 1 for i=0
(2)= \/Ecos(iﬂZ) for i=123,... (8)

1 1
b = [b(2)h(2)dz, ¢, = [c(2)h(2)dz,

0 0
We have the following parameters (6) (verified in a laboratory Oprzedkiewicz 2001):
a=0.000945, R, =0.0271,¢ =25.7922 , z, =1/13, 2, =25/52,z, =27/52.

From (7), we have
A=diag( -0.0269 -0.0358 -0.0624 -0.1068 -0.1690 -0.2490 -0.3467

-04621 -0.5954 -0.7464 -0.9152 -1.1017 -1.3060 -1.5281 -1.7679
-2.0255 -23009 -2.5940 -2.9049 -3.2335 -3.5800 -3.9441 -4.3261

-4.7258 -5.1433)
B=[0.0769 0.1077 0.1046 0.0995 0.0926 0.0842 0.0745 0.0638

0.0526 0.0412 0.0299 0.0190 0.0090 -0.0000 -0.0077 -0.0139
-0.0187 -0.0218 -0.0234 -0.0235 -0.0223 -0.0200 -0.0168 -0.0130

-0.0087] "
C=[10171 0 -14348 -0.0000 14244 -0.000 -1.4070 0.0000
1.3830 -0.0000 -1.3524 -0.0000 13156 -0.0000 -1.2729 -0.0000

1.2246 -0.0000 -1.1711 -0.0000 1.1130 -0.0000 -1.0507 0.0000 0.9848]

and D=0.
In order to perform the simulation, the heating process was implemented with use of

Matlab/Simulink environment (see Fig. 1).
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Fig. 5. Simulink system

The zero-order-hold is necessary to simulate a measurement device (e.g. thermometer)
with various sampling times. We used the Tustin method (see, e.g., Astrom 1990) to
discretize the compensator and then find the appropriate sampling frequency. It
transforms the continuous system S(4,B,C,D) into a discrete one for a given sampling
time 4 using the formulas

h h
A =T += A -2 A4)"
( 5 X 5 )

B'=A"(4"-1)B (8)
C'=C
D' =D

During the simulation we wanted to find optimal sampling time of the compensator for
various sampling frequencies for temperature measurement. We used the performance
indicator proposed by Bini [2014]:

J(N)= % [l )

During the simulations, we set T=200 [s]. For optimization, we used golden search
with parabolic interpolation implemented in Matlab Optimization Toolbox. The

optimization constraints were chosen as 1< N <10°. The results are gathered in
Table 1.

Table 1
The results of optimization
Temperature sampling Optimal number of samples Samph;g time
frequency [Hz] N, h=——1s]
opt
10 23700 0.0084
1 23896 0.0083
0.1 68957 0.0029
0.03 84140 0.0024
0.02 48284 0.0041
0.01 69997 0.0028

It can be seen that sampling time of the controller increases with increasing sampling
frequency. This means that we have a buffer in the controller for doing necessary
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calculations. The accuracy of temperature measurements and controller performance
are depicted in the figures 6 and 7.
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Fig. 6. Temperature for various sampling frequencies
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Fig. 7. Control signal for various sampling frequencies
7. Conclusion
In this paper, we presented an algorithm of controller design using two methods:

theoretical approach to design finite dimensional feedback (5) and stabilization method
based on approximation (Tustin, finite dimensional) — see example (7).
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Nevertheless, the proposed algorithm is general and may be used for control of
various systems. One of the possible way of applications may be non-integer order
diffusion equation Gal and Warma [2016]. However, it will require further analysis
and research, as the methods for integer order systems cannot be directly applied to
them.
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