
AUTOMATYZACJA PROCESÓW DYSKRETNYCH 2022

Mirosław ŁAWRYNOWICZ, Jerzy JÓZEFCZYK

Politechnika Wrocławska

ANALIZA WARUNKÓW ROZWIĄZYWALNOŚCI PROBLEMÓW

SZEREGOWANIA ZADAŃ Z NIEUSTALONYMI TERMINAMI GOTOWOŚCI

Streszczenie. Przedmiotem pracy jest zdefiniowanie oraz szczegółowa analiza

warunków, które umożliwiają rozwiązanie problemów szeregowania zadań

z nieustalonymi terminami gotowości na maszynach dowolnych w czasie

wielomianowym. Zaproponowane modele bazują na kryterium długości

uszeregowania i kryterium żalu dla długości uszeregowania (optymalizacja

odporna). Zbadano jak nieustalone terminy gotowości zadań mogą wpływać na

złożoność obliczeniową wybranych problemów.

ON THE SOLVABILITY OF JOB SCHEDULING PROBLEMS WITH NON-

FIXED RELEASE DATES

Summary. The subject of this paper is a detailed analysis of the polynomial-time

solvability of job scheduling problems with non-fixed release dates. Proposed

models involve the makespan criterion and the minmax regret criterion for the

makespan (robust optimization). We investigated how non-fixed release dates can

affect the complexity of chosen problems.

1. Introduction

Analysis of an instance structure may allow to optimally solve an optimization or

decision problem. Narrowing down decision space depends on the values of constituent

variables. This type of research has a major impact on developing efficient exact

algorithms when conditions for polynomial solvability are satisfied. Identifying these

conditions for job scheduling with non-fixed release dates on unrelated machines is the

main subject of this paper. By term “non-fixed” we mean the machine-dependent release

dates or robust case in which each release date belongs to a well-defined interval.

Namely, our aim is to investigate how the input parameters affect the hardness of

underlying scheduling problems with the makespan criterion and its non-deterministic

counterpart with the minimax regret criterion. Identification of polynomially solvable

cases has been conducted for well-known optimization problems. In [8], the authors

consider the single machine scheduling problem to minimize maximum weighted

absolute deviations of job completion times from a common due-date. It is proven that

the case of unit processing time jobs and the case of due-date assignment for a given job

sequence ensures polynomial solvability. In [1], the authors show that the pooling

130 M. Ławrynowicz, J. Józefczyk

problem with one pool and a bounded number of inputs can be solved in polynomial

time. Similar scientific papers in this field papers are [2], [11], [12].

Machine-dependent release dates result from the assumptions introduced in the

Scheduling-Location (ScheLoc) problem. In ScheLoc problems the objective is to find

locations for the machines and a schedule for each machine subject to some production

and location constraints such that some scheduling objective is minimized or maximized

[4], [10]. Then, each release date depends on the distance between a job’s location and

machine’s location. Consequently, a vector of unequal release dates is defined for each

job. For the makespan criterion and arbitrarily selected locations for machines, the

ScheLoc problem comes down to , max| |i jR r C . Only [7] deals with the machine-

dependent release dates. The two constructive algorithms are developed for , max| |i jR r C

. It is proven that a polynomial-time greedy algorithm with a long-term planning

guarantees an approximation ratio depending on the unrelated machines’ performance.

A second algorithm uses a simple decomposition strategy to solve optimally and

sequentially subproblems for a predefined number of jobs. This approach is based on a

brute-force method. Imprecise coordinates of locations for machines require a robust

decision-making. This case forces imprecise release dates as shown in [6]. To handle

this case the minimax regret version of , max| |i jR r C with interval release dates, denoted

by  . , . max| | Reg  i j i j i jR r r r C , has been investigated in [5] where the comparison

between a greedy algorithm and Tabu Search metaheuristic has been conducted.

The paper starts with the formulations of , max| |i jR r C and

 . , . max| | Reg  i j i j i jR r r r C in Section 2. The central part of the considerations given in

Section 3 refers to the analysis of polynomial solvability of the scheduling problems.

Finally, the concluding remarks are given in Section 4.

2. Scheduling problems

Denote by  1,2,..., ,...,M j n the set of n independent, non-preemptive jobs to be

processed on the set  1,2,..., ,...,M i m of m unrelated machines. A job release date

, 0i jr and job processing time , 0i jp depend on machine i . All the parameters are

stored in the two-dimensional matrices 1,2,...,,
1,2,...,




   i mi j
j n

p p , 1,2,...,,
1,2,...,




   i mi j
j n

r r , respectively.

The complete schedule is represented by 1,2,...,, ,
, 1,2,...,



   i mi k j
k j n

x x where  , , 0,1i k jx that

indicates if job j is assigned to the kth, 1,2,...,k n , position in a sequence deployed on

i . The kth job completion time on i can be calculated by the equation

       , , , , , 1 , ,0

1

; max ; , , 1,2,..., , 1,2,..., , ; 0,



    
n

i k i k j i j i k i j i

j

C x S x p C x S r i m k n C x S

 (1)

and  ,
1,2,...,
1,2,...,

, 0



 i k
i m
k n

C x r if , , 0i k jx ,  ,S p r , and the makespan is determined by

   max ,
1,2,...,

; max ;



ii ni m

C x S C x S , , ,

1 1 


n n

i i k j

k j

n x .

On the solvability job scheduling problems… 131

To sum up: for given J , M , R , p , the deterministic scheduling problem

, max| |i jR r C consists in the determination of the optimal matrix *x to minimize

    *

max max; min ;
x

C x S C x S (2)

subject to

, ,

1 1

1, 1,2,..., ,
 

 
m n

i k j

i k

x j n (3)

 , ,

1

1, 1,2,..., , 1,2,..., ,


  
n

i k j

j

x i m k n (4)

 ,1,

1

, 1,2,..., , 1,2,..., ,


  
n

i j

j

x m i m k n (5)

 , 1, , , ' 0, 1,2,..., , 1,2,..., 1, ',      i k j i k jx x i m k n j j (6)

  , , 0,1 .i k jx (7)

Each job has to be assigned only once according to (3). At most one job can be handled

in a single position as specified in (4). Not every machine has to be used that is allowed

by (5). A sequence of jobs deployed on a single machine has to be represented by the

consecutive non-zero entries which is stated in (6). Such a technical constraint (6)

guarantees the correctness of (1) and improves the readability of the schedule. Finally,

the binary decision variable domain is given in (7).

The non-deterministic version of (2) involves imprecise release dates. It is assumed

that release date of job j on machine i belongs to the well-defined interval

1,2,...,, , ,
1,2,...,

, 




   i mi j i j i j
j n

u r r , , ,0   i j i jr r . Then, the set of feasible release dates of job j is

determined by the Cartesian product of intervals 1, 2, ,...   j j j m jU u u u . All the feasible

scenarios are stored in 1 2 ...    nU U U U . The decision variable has the same form as

(7) and is denoted by x . Then, a value of the maximal regret is equal to

    *

max maxmax , ; , ;



u U

C x u S C x u S .

To sum up: for given J , M , U , p , the non-deterministic scheduling problem

 . , . max| | Reg  i j i j i jR r r r C deals with the determination of the optimal matrix *x to

minimize

        * *

max maxmin max , ; , ;


 
x u U

Q x C x u S C x u S . (8)

subject to (3)-(7).

132 M. Ławrynowicz, J. Józefczyk

3. On the solvability of , max| |i jR r C and  . , . max| | Reg  i j i j i jR r r r C

The complexity of , max| |i jR r C results from the complexity of its simpler version

max|P C . For , ,
, 
 i j s t

i s j t
r r and , ,


 i j i t
j t
p p , the problem (3) comes down to max|P C even

if , 0i jr , which is strongly NP-hard for at least three machines and at least NP-hard for

exactly two machines [3]. Next we will discuss the conditions of polynomial solvability

of , max| |i jR r C and  . , . max| | Reg  i j i j i jR r r r C . The chosen cases are listed below.

1) Impact of a single release date on the solvability of , max| |i jR r C .

Although the simplicity of the proof of NP-hardness of , max| |i jR r C , establishing

connections between the processing times and release dates sheds more light on the

problem’s complexity. Since the matrices p and r are independent, a seemingly

insignificant change of some values may have an impact on the decision space.

A considerable improvement in a single machine performance may facilitate the

problem. For instance, if

  , , , , ,
1,2,..., 1,2,..., 1,2,...,

arg min arg min 
     

       i j i j i j i j i j
j n i m i m j j

i p i r r p r , (9)

the optimal sequence is deployed on i irrespective of remaining machines’ (\M i)

parameters when for job j exists unique j such that , , , 


  i j i j i j
j j
r p r excluding the

latest available job. This solution can be achieved using the Earliest Release Date (ERD)

rule [9] that assigns the jobs as soon as there is machine availability to process them.

2) Impact of a single machine’s parameters on the solvability of , max| |i jR r C .

Let us consider another case in which the release dates of job j are delayed in such

a way that

, , ,

\\

max max , 1,2,..., .   
  



  i j i j i j
i M i M

j J jj J j

r r r i m (10)

Then a value of (2) depends only on the parameters of job j if the remaining jobs are

scheduled before j. In fact, each instance could be easier to solve if release date of a

single job can be modified. Notice that an order of \J j does not affect the makespan

irrespective of a schedule constructed before ,i jr . As a result, the optimal value of (2) is

achieved if j is assigned to the machine

  , ,
1,2,...,

arg min  


  i j i j
i n

i r p (11)

in the last position of a sequence.

3) Impact of a single machine’s parameters on the solvability of , max| |i jR r C .

On the solvability job scheduling problems… 133

Let us introduce a more sophisticated instance. We assume the jobs order of

availability is the same on each machine but only a single machine  1,2 i M ensures

that , ,i j i jr p , for unique job j , is lower than the subsequent jobs release dates as shown

in Figure 1.

Fig. 1. The instance with two machines  1,2M and n jobs where an optimal schedule

determined for  \ , 1J n n does not affect the makespan, and , , 1,i n i nr r i M

It is easy to see that the greedy algorithm solves the underlying instance optimally by

sequential determination of  , ,
1,2,...,

arg min


i j i j
i m

r p for each non-assigned job. Looking at

Figure 1, remark that the makespan can be expressed using only the parameters of a

single job if a schedule is optimal.

4) Polynomial-time solvability of  . , . max| | Reg  i j i j i jR r r r C .

It turns out that conditions (9) and (10) defined for , max| |i jR r C ensure polynomial

solvability of its non-deterministic counterpart  . , . max| | Reg  i j i j i jR r r r C although the

evaluation of  *

max , ;C x u S in (8) requires solving , max| |i jR r C optimally, which is at least

NP-hard. Remark that a value of (8) is greater than zero only if some subset of jobs

scheduled according to x can be handled earlier in *x . Hence, if condition (9) is satisfied

then any job cannot be rescheduled in *x because the completion time of each job is the

earliest on the same machine and  * 0Q x . Let us modify (10) as follows:

, , ,

\\

max max , 1,2,..., .

   
  



  i j i j i j
i M i M

j J jj J j

r r r i m (12)

If condition (10) is satisfied for j that is scheduled on (11) then the makespans

 max , ;C x u S and  *

max , ;C x u S are equal because only \j J j can be rescheduled.

We will show that the generalization of the case described in 3) for m machines

determines such a new scheduling problem that release dates and deadlines are machine-

dependent. In general, if there exist m jobs in

134 M. Ławrynowicz, J. Józefczyk

    , , , , ,
1,2,...,

, | arg max for 1,2,...,   


       i l j j j l j k k l j l j k
l n

L r J j J j r i m r r r r (13)

and we are able to create a schedule of the jobs in  \ ,J L r J such that

  , ; 
ii n jC x S r ,  ,j L r J ,  , L r J m , 1,2,...,i m , (14)

then the makespan depends only on the jobs in (13). jr refers to machine-independent

release date. Thus traceability results from scheduling m jobs on m machines. For this

reason, condition (14) narrows down a subset of polynomial time solvable cases.

Clearly, the parameters in S can be adjusted for any matrix x in polynomial time to

satisfy (14). On the other hand, we will prove that the complexity of verifying condition

(14) for an undefined x is computationally hard. Solving this problem would enable us

to identify a traceable instance. First, let us impose the following constraints (see Figure

2) on the instance of (2):

  , 2L r J , (15)

 

1, 2,
 \ 

 
p a

e e
e J J J

p p ,  ,pJ j l ,  ,aJ g h , (16)

 , ,
1,2,...,
min


w t w j
j n

r r , , ,w j w lp p ,  pt J ,  1,2w , (17)

 

,

\ 

 
p a

w t e

e J J J

p p and , , , w t w t w br p r ,  pt J ,  ab J ,  1,2w , (18)

 \

K+W


 
p a

e

J J J

p and K>W . (19)

The latest release date on each machine refers to a unique job (15). The processing times

of the jobs in  \ , , ,J j l g h are not machine-dependent (16). Both j and l has the

identical parameters on each machine (17). Constraint (18) stipulates that the release

date of each job in  \ , , ,J j l g h is covered by the processing times of j or l . Term (19)

describes the instance-specific conditions. Clearly, this instance can be constructed in

polynomial time.

The decision problem referred to as Condition is as follows: Does exist a schedule such

that (14) is satisfied ?

We will prove the NP-completeness of this decision problem via the transformation

from Subset Sum problem [3]. Let us begin by presenting its formal description.

Subset Sum

Instance: Finite set B and given size () 0s b for each b B , positive integer K .

Question: Is there a subset  B B such that the sum of the sizes of the elements in B

is exactly K ?

On the solvability job scheduling problems… 135

Fig. 2. The instance of , max| |i jR r C constrained by (15)-(19)

The polynomial transformation of Subset Sum problem to the instance of Condition is

based on (15)-(19),  \ , , ,J J j l g h ,  1,2M , the release dates , 0i tr , and the

processing times 0tp , t J .

Theorem 1. Condition is NP-complete.

Proof. It is evident that the condition (13) can be verified in polynomial time for the

given x . Therefore, the decision problem is in NP because there exists a poly-time

certifier for (13). The local replacement assumes t b , ()tp s b , J B .

To ensure (13), the jobs must be scheduled within the unused time slots K and W , as

illustrated in Figure 2. This can be done if and only if there exists a subset  J J such

that K


 e

e J

p . In effect, machine 2 must handle
\

W

 

 e

e J J

p time units of processing

within the available time slot due to (19). Hence the required subset J exists for the

instance of Subset Sum if and only if a feasible schedule exists for the corresponding

instance of Condition. Q.E.D

3. Final remarks

Our research raises the subject of an impact of the values of input parameters on

the complexity of , max| |i jR r C and  . , . max| | Reg  i j i j i jR r r r C . The proposed conditions

demonstrate rather strikingly that the long time gaps between the release dates on each

machine simplifies the problem. The essential point to note here is that balancing the

load over the various machines, which is an important goal in practice, may not occur

in some instances. Moreover, we indicated that the conditions of polynomial solvability

of , max| |i jR r C and  . , . max| | Reg  i j i j i jR r r r C can be equivalent. We proved that a simple

condition can determine the new scheduling problem that has not been yet studied in the

literature. These considerations give some insights into the structure of chosen

scheduling problems and demonstrate the difficulty in generating relevant datasets,

which is a crucial topic in numerical experiments.

136 M. Ławrynowicz, J. Józefczyk

REFERENCES

1. Boland, N., Kalinowski, T., & Rigterink, F. (2017). A polynomially solvable case

of the pooling problem. Journal of Global Optimization, Vol. 67 No. 3, p. 621-630.

2. García, A., &Tejel, J. (2017). Polynomially solvable cases of the bipartite traveling

salesman problem. European Journal of Operational Research, Vol. 257 No. 2, p.

429-438

3. Garey, M. R., & Johnson, D. S. (1979). Computers and intractability (Vol. 174).

San Francisco: freeman.

4. Heßler, C., & Deghdak, K. (2017). Discrete parallel machine makespan ScheLoc

problem. Journal of Combinatorial Optimization, Vol. 34 No. 4, p. 1159-1186.

5. Józefczyk J., & Ławrynowicz M. (2021), On selected models and methods of

robust decision-making and their applications, World Organisation of Systems and

Cybernetics (WOSC Congress)

6. Józefczyk, J., Ławrynowicz, M., & Filcek, G. (2022) On problems and methods of

coordinated scheduling and location. W: Uncertainty and Imprecision in Decision

Making and Decision Support: New Advances, Challenges, and Perspectives :

Selected papers from BOS-2020, held on December 14-15, 2020, and IWIFSGN-

2020, held on December 10-11, 2020 in Warsaw, Poland / eds. Krassimir T.

Atanassov [i in.]. Cham : Springer, cop. 2022. s. 145-163. (Lecture Notes in

Networks and Systems, ISSN 2367-3370; Vol. 338)

7. Ławrynowicz, M., & Józefczyk, J. (2022, August; Accepted). Scheduling jobs with

machine-dependent release dates on unrelated machines. In 2022 26th International

Conference on Methods and Models in Automation and Robotics (MMAR) IEEE.

8. Mosheiov, G., & Sarig, A. (2010). Scheduling with a common due-window:

polynomially solvable cases. Information Sciences, Vol. 180 No. 8, p. 1492-1505.

9. Pinedo, M. L. (2012). Scheduling (Vol. 29). New York: Springer.

10. Rajabzadeh, M., Ziaee, M., & Bozorgi-Amiri, A. (2016). Integrated approach in

solving parallel machine scheduling and location (ScheLoc) problem. International

Journal of Industrial Engineering Computations, Vol. 7 No. 4, p. 573-584

11. Smet, P., Brucker, P., De Causmaecker, P., & Berghe, G. V. (2016). Polynomially

solvable personnel rostering problems. European Journal of Operational

Research, Vol. 249 No. 1, p. 67-75

12. Zukerman, M., Jia, L., Neame, T., & Woeginger, G. J. (2001). A polynomially

solvable special case of the unbounded knapsack problem. Operations Research

Letters, Vol. 29 No. 1, p. 13-16

