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ANALIZA DOSTOSOWYWANIA TABU SEARCH DLA PROBLEMU SZERE-
GOWANIA NA JEDNE]J MASZYNIE W WARUNKACH NIEPEWNOSCI

Streszczenie. W tej pracy kontynuujemy analiz¢ jak dopasowanie algorytmu tabu
search dla odpowiedniego poziomu zaburzenia danych danych daje lepsze rezul-
taty. W pracy rozpatrujemy szeregowanie zadan na jednej maszynie z danymi
zaburzonymi modelowanymi przez rozktad normalny. Wyniki eksperymentow
pokazuja, ze odpowiednie dopasowanie algorytmu daje lepsze rezultaty niz w
przypadku braku uwzglednienia poziomu zaburzenia danych.

ANALYSIS OF CUSTOMIZING TABU SEARCH FOR UNCERTAIN SINGLE
MACHINE SCHEDULING

Summary. This paper is a continuation of a similar one and we make an ana-
lysis to verify how much customizing tabu search algorithm for a specific data
disturbance level make a difference. We consider a single machine scheduling
problem and data modeled with the normal distribution on different data distur-
bance levels. The computational experiments results show that the investigated
optimization method provides more robust results when customized for specific
disturbed data distributions.

1. Introduction

Many optimization problems needs to be considered with the assumption that
certain parameters are not known at the time when the solution is being calculated. In
domains like production, manufacturing, delivering goods, supply chain and many others
there are a lot of parameters which depends on external factors which can’t be predicted
in advance, for instance in the transportation domain delivery on time may be impacted
by weather conditions, cars’ breakdowns, traffic jams, driver’s condition and others. In
such a case where the problem input data is uncertain, applying the deterministic appro-
ach may be not appropriate. We may experience significant increase of execution cost
(and by that losing the assumed delivery time) or even losing the acceptability (feasibi-
lity) of solutions.

Uncertainty in optimization problems has been investigated for many decades
next to the research focused on the deterministic models. Basics of stochastic schedu-
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ling are described in Pinedo [10]. More detailed reviews dedicated to methods solving
scheduling problems in stochastic models are presented in Cai et. al. [7], Dean [8], So-
roush [14], Urgo and Vancza [15], Vondrdk [16], and Zhang et al. [17]. The approach
which is a baseline for the analysis in this paper was investigated in Bozejko et al. [1],
[2], [3], [4], [6], Rajba et. al. [11], [12] and Rajba [13] where effective methods were
proposed for single machine scheduling problem where parameters are modelled with
random variables with the normal distribution. Moreover, in [1], [2] and [11] Erlang di-
stribution was investigated and those papers cover > w;U; and >~ w;T; problem variants.
On top of that in [3] and [4] techniques to decrease further the computational time (i.e.
elimination criteria and random blocks) were introduced keeping the robustness of the
determined solutions on the good level.

In this paper we investigate a tabu search method for a single machine scheduling
problem tailored for uncertain data with the normal distribution as described in [1].
This is the continuation of the investigation presented in [5] where an another variant
of the problem was analyzed. The test data is generated using the normal distribution
with different deviation levels based on the OR Library data set. Having the test data,
we execute algorithm configured for a specific disturbance level several times for each
data set with data disturbed with the normal distribution with a given disturbance level.
As an additional data set we included also data with the uniform distribution within
a specific range. All the executions are to verify how much tailoring an algorithm for
a given disturbance level gives better results when targeting data set of that specific
disturbance level. The conducted computational experiments show that the considered
robust optimization method provides better results when configured for given disturbed
data distributions, however different variants in a slightly different way.

The rest of the paper is structured as follows: in Section 2 we describe a clas-
sic deterministic version of the problem, then in Section 3 we introduce a randomized
variant of the one. In Section 4 we present disturbed data sets and the analysis appro-
ach, and in Section 5 the main results and a summary of computational experiments are
described. Finally, in Section 6 conclusions and future directions close the paper.

2. Deterministic scheduling problem

Let 7 = {1,2,...,n} be a set of jobs where for each i € J we define p; as a
processing time, d; as a due date and w; as a cost for a delay. All jobs shall be executed
on a single machine under the following main conditions: (1) at any given moment at
most one job can be executed and (2) all jobs must be executed without preemption.

Let II be the set of all permutations of the set 7. For each permutation 7 € II we
define

Cr(i) = D_ Pr(j)
j=1

as the completion time of a job 7 (7).
Then we introduce the delay cost as

Tﬂ'(l) = maX{Oa CTF(’L) - dﬂ'(l)}
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and the cost function for the permutation 7 as

Finally, the goal is to find a permutation 7* € II which minimizes

W(?T*) = min (Z wﬂ(i)Tﬂ(i)> .

mell i—1
3. Probabilistic model

In this section we introduce a probabilistic version of the problem and we investi-
gate two variants: (a) uncertain processing times and (b) uncertain due dates. In order to
simplify the further considerations we assume w.l.0.g. that at any moment the considered
solution is the natural permutation, i.e. 7 = (1,2,...,n).

3.1. Random processing times

Random processing times are represented by random variables with the normal
distribution p; ~ N(p;,c - p;)) (i € J, ¢ determine the disturbance level and will be
defined later) while due dates d; and weights w; are deterministic. Then, completion
times C; are random variables

C’iNN<p1+p2...+pi,c- p%+...+pl2>. (2)
and the costs are random variables
T, = max{0, C; — d;}

For each permutation 7 € II the cost in the random model is defined as a random
variable

3.2. Random due dates

_ Random due dates are represented by random variables with the normal distribu-
tiond; ~ N(d;, c-d;), 1 € J while processing times p; and weights w; are deterministic.
Completion times are the same as in the processing times variant and the costs are ran-
dom variables

T; = max{0, C; — d;}
Again, cost functions are the same as for the variant with random processing times.
3.3. Comparison functions

As in the Tabu Search implementation we need a possibility to compare 2 candi-
date solution, we introduce the following comparison function for both variants

W(r) = znzlsz(TZ)

. Appropriate formulas for £(7;) has been derived in [1]:
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Theorem 1. ([1]) If the task completion times are independent random variables nor-
mally distributed p; ~ N(p;,c-p;) (i =1,2,...,n), then

o —(d;—p)*

E(Tz) =(1- F@(d@)) (\/%6202 + (p—dy) (1 — FN(oyl)(di ; “)) )

Theorem 2. ([1]) If the expected due dates are independent random variables normally
distributed d; ~ N(d;, c - d;), then

X C; — Ci -
E(T:) = Fnoy ( - N) (CiFN(O,l) < . M)
o _C=p?

e 27 — uFnu) <C¢—u>>.
\ 2T ’ o

4. Disturbed data and its analysis

_|_

The considered approach for robust optimization was considered in several pa-
pers ([11, [2], [3], [4], [6], [11], [13]). One of the key assumptions was the input data
coming with a very specific probabilistic distribution. In majority of considered cases we
investigated data generated from the normal distribution with a specific mean p and stan-
dard deviation o (as a fraction of ). In all considered variants on average the proposed
solution offered better results than the method based on deterministic approach.

In this paper we investigate how much the model and based on it Tabu Search
implementation is vulnerable on deviations from the assumed distribution parameters.

Baseline test instances come from OR-Library ([9]) where there are 125 exam-
ples for n = 40, 50 and 100 (in total 375 examples). All the disturbed data has be-
en generated targeting a specific problem variant, i.e. for each OR Library instan-
ce 100 disturbed data instances have been generated assuming: (a) problem para-
meter which is uncertain, i.e. either processing times p; or due dates d;, (b) distur-
bance level ¢ introduced in Sections 3.1. and 3.2. which takes the following values
¢ € {0.02,0.04,0.06,0.08,0.1,0.15,0.2,0.25,0.3}. On top of that we also generated
data with the uniform distribution where each disturbed value comes from the range
(0.8, 1.2] where z is the considered uncertain variable (i.e. either p; or d;).

In our analysis we take a data set for a specific disturbance context, i.e. problem
variant (uncertain p; or d;) and disturbance level (normal distribution with ¢ value or
uniform distribution) and then execute tabu search algorithm 9 times each time configu-
red for a different disturbance value c. As a result we get a Table 1 with raw data of the
following structure: N refers to the number of tasks, Factor refers to the data disturban-
ce level (parameter c), Task No. refers to the OR Library instance number (1-125), Dist.
Item refers to the disturbed instance number for a given OR library instance (1-100),
and the rest of columns refer to outcome of execution of the algorithm configured for a
certain disturbance level.

The goal is to determine for a considered method if and how much configuring
algorithm for a specific method make a difference in obtained results. For instance, ha-
ving a data disturbed a little like for ¢ = 0.02, if there is difference between executing
algorithm configured for ¢ = 0.02 and algorithm configured for ¢ = 0.3. In our analysis
we check all those combinations and in this paper we do that on an aggregated level, i.e.
we consider all values for given n and disturbance level as a comparison baseline.
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Tabela 1
Raw result data for each n, distribution, instance number and disturbed item number

N Factor | Task No. Dist. AP o AP o4 AP g AP s AP AP 15 AP AP o5 AP3
Item

40 0.02 0 0 V11 v12 v13 V14 V15 V16 v17 V18 V19
40 0.02 0 1 V21 v22 V23 V24 V25 V26 va7 V28 v29
40

39200

39000

38800

38600

38400

38200

38000

37800

37600

37400

37200

0,02 0,04 0,06 0,08 0,15 0,25 Uniform

B Avg(AP_0.02) m Avg(AP_0.04) m Avg(AP_o.os) Avg(AP_0.0S) H Avg(AP_0.1)
B Avg(AP_0.15) m Avg(AP_0.2) m Avg(AP_0.25) B Avg(AP_0.3)

Rys. 1. Average values for each disturbance data group, random p;, n = 40

S. Computational Experiments

All the tests are executed on the data described in Section 4. and using standard
tabu search method implementation with small adjustments related to the way how the
two candidate solutions are compared. Due to the limited space in this paper we skip
the algorithm description including configuration parameters and refer to [1] for more
details.

5.1. Results

On Figures 1, 2, 3, 4, 5, 6 we can observe visual representation of the obtain
results. On each figure we can see 10 groups for each disturbance data set (i.e. for each
disturbance level ¢ and uniform distribution). Within each group we can see 9 values
representing execution of the algorithm configured for all 9 different disturbance levels,
1.e. all ¢ values.

55000
54500

54000

53500
53000
52500 | |‘
52000

0,02 0,04 0,06 0,08 0,15 0,25 Uniform
m Avg(AP_0.02) m Avg(AP_0.04) m Avg(AP_uos) Avg(AP_0.08) m Avg(AP_0.1)
B Avg(AP_0.15) M Avg(AP_0.2) m Avg(AP_0.25) B Avg(AP_0.3)

Rys. 2. Average values for each disturbance data group, random p;, n = 50
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224000
223000
222000
221000

220000
219000
S
217000

0,02 0,04 0,06 0,08 0,15 0,25 Uniform
m Avg(AP_0.02) m Avg(AP_0.04) m Avg(AP_0.0G) Avg(AP_o.os) = Avg(AP_0.1)
H Avg(AP_0.15) m Avg(AP_0.2) m Avg(AP_0.25) B Avg(AP_0.3)

Rys. 3. Average values for each disturbance data group, random p;, n = 100

50000

40000

30000
20000
10000

0

0,02 0,04 0,06 0,08 0,15 0,25 Uniform

B Avg(AP_0.02) B Avg(AP_0.04) B Avg(AP_0.06) Avg(AP_0.08) B Avg(AP_0.1)
= Avg(AP_0.15) m Avg(AP_0.2) m Avg(AP_0.25) m Avg(AP_0.3)

Rys. 4. Average values for each disturbance data group, random d;, n = 40

We can immediately observe that the algorithm configured for a specific distur-
bance level (or close to) on average gives better results than the algorithm configured for
other disturbance level, however more meaningful difference we can observe for distur-
bance level from 0.15. We can also see that the effect is much stronger for random p;
than random d; what is somehow interesting as this is the opposite than for the problem
variant described in [5]. On the other hand for smaller disturbances (0.02—1.0) values are
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50000
40000
30000
20000
10000

0

0,02 0,04 0,06 0,08 0,15 0,25 Uniform

m Avg(AP_0.02) m Avg(AP_0.04) m Avg(AP_0.06) Avg(AP_0.0S) n Avg(AP_O.l)
B Avg(AP_0.15) m Avg(AP_0.2) m Avg(AP_0.25) m Avg(AP_0.3)

Rys. 5. Average values for each disturbance data group, random d;, n = 50
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0,02 0,04 0,06 0,08 0,15 0,25 Uniform
m Avg(AP_0.02) m Avg(AP_0.04) m Avg(AP_0.06) m Avg(AP_0.08) m Avg(AP_0.1)
m Avg(AP_0.15) W Avg(AP_0.2) m Avg(AP_0.25) B Avg(AP_0.3)
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250000

Rys. 6. Average values for each disturbance data group, random d;, n = 100

rather similar, however, there is no case where for the small disturbances (0.02—0.06) the
tailored algorithm is the best choice, in most of cases it is algorithm designed for a little
bigger disturbance levels like 0.08 or 0.1.

6. Conclusions

In this paper we solved a single machine scheduling problem with a tabu search
method configured for defined several disturbance levels of the normal distribution and
uniform distribution. The investigation is a continuation of the previous work where
different problem variant was considered. The obtained results show that for bigger di-
sturbance levels the closer the considered robust optimization method is configured to
the disturbance level of the data set, the better results it provides. Even though the overall
trend has been observed in all considered problem variants, the actual results depend on
the disturbance levels and the considered uncertain parameter what has been presented
on the respective diagrams.

The results of the analysis are promising and interesting and we plan to continue
further the investigation by performing more deep analysis and continue investigating
other problems and target functions.
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