STROJENIE REGULATORA PID METODĄ PSO DLA ROBOTA TYPU CAP-SUBOT

Streszczenie. W pracy przedstawiono strojenie regulatora PID oraz analizę porównawczą układu sterowania z regulatorem PID dla robota typu capsubot. Parametry regulatora zostały dobrane ze względu na cztery wybrane wskaźniki regulacji z wykorzystaniem algorytmu optymalizacji rojem cząstek.

A TUNING PID CONTROLLER WITH THE USE OF PSO METOD FOR CAP-SULE TYPE ROBOT

Summary. The paper presents a PID controller tuning and comparative analysis of a control system with a PID controller for a capsubot robot. The controller parameters have been selected on the basis of four selected control factors with the use of particle swarm optimization algorithms.

1. Wprowadzenie

Systemy mikrorobotyczne to małe roboty używane we wrażliwym środowisku, takim jak ludzkie ciało, do diagnozowania i kontroli stanu zdrowia pacjenta. Ponadto mogą być używane w środowiskach zamkniętych do inspekcji rurociągów, diagnostyki inżynierskiej, eksploracji dna morskiego, katastrof itp. Mikroroboty, często nazywane capsubotami, zwykle składają się z wewnętrznej masy i zewnętrznego korpusu. Konwencjonalne systemy ruchu zostały zaprojektowane i zastosowane naśladując ruch dżdżownic [20] i kajakarstwa [9], pola magnetycznego [7] itp. Główną ideą jest to, że ruchy kierunkowe można osiągnąć za pomocą wewnętrznej masy/bezwładności napędzanej wibracjami, która oddziałuje z głównym korpusem robota i pośrednio pokonuje siły oporu środowiska [6, 16].

Jednym z głównych zadań jest podążanie przez robota za zadaną trajektorią. Drugim głównym celem jest projektowanie systemów sterowania z różnymi typami regulatorów. Z tego powodu w literaturze można znaleźć wiele prac dotyczących projektowania trajektorii i układów sterowania. W artykule [10] autorzy zbadali ruch capsubota i przedstawili czteroetapową strategię ruchu. Zaproponowali optymalne prawo sterowania bazujące na lokomocji capsubota. W pracy [13] przedstawiono czterosegmentowy profil ruchu oraz zweryfikowano zoptymalizowany regulator PID, dostrojony przez imperialistyczny algorytm konkurencji (opis imperialistycznego algorytmu konkurencji mozna znaleźć w [1]). Autorzy [14] przeprowadzili analizę układu sterowania modelu capsubot z czterostopniową strategią ruchu jak w [13], przy użyciu zmodyfikowanego chaotycznego algorytmu genetycznego i przeanalizowali wyniki symulacji.

Prezentowany artykuł składa się z następujących rozdziałów. W rozdziale drugim został opisany model matematyczny robota typu capsubot wraz z jego reprezentacją w postaci równań stanu. W kolejnym rozdziale przedstawiono algorytm optymalizacji za pomocą roju cząstek wraz z wybranymi wskaźnikami jakości regulacji. Zlinearyzowany model capsubota wraz z odpowiednimi transmitancjami został opisany w rozdziale piątym. Rozdział szósty zawiera wyniki eksperymentów symulacyjnych wraz z krótką dyskusją. Na koniec zostały sformułowane wnioski.

2. Model matematyczny capsubota

Koncepcję budowy mikrorobota przedstawiono w pracach [11, 12]. Generalnie, ruch robota, zwanego dalej capsubotem, opiera się na ruchu siłownika, który napędza wahadło wewnętrzne. Wahadło porusza się do przodu i do tyłu napędzając cały system. Capsubot zaczyna się poruszać, gdy wypadkowa siła przyłożona do ciała w kierunku poziomym przekroczy maksymalną wartość siły tarcia suchego na powierzchni styku. Założono, że masa wahadła jest scentralizowana w kuli. Ponadto środek masy platformy pokrywa się z osią obrotu. Schemat kinematyczny capsubota pokazano na rysunku 1.

Rys. 1. Schemat robota typu capsubot [2]

Opierając się na powyższym schemacie, położenie i prędkość kuli wahadła dane są poniższymi formułami

$$\begin{aligned} x_{ball} &= x_C - l \cdot \sin(\theta), \quad \dot{x}_{ball} = \dot{x}_C - l \cdot \theta \cdot \cos(\theta), \\ y_{ball} &= l \cdot \cos(\theta), \quad \dot{y}_{ball} = -l \cdot \dot{\theta} \cdot \sin(\theta). \end{aligned}$$

Niech \mathcal{F} będzie wypadkową siłą przyłożoną do kuli, która może być rozłożona na składowe w kierunku poziomym i pionowym. Poszczególne składowe siły \mathcal{F} są wyrażone w następujący sposób

$$\mathcal{F}_x = -m\ddot{x}_C + ml\ddot{\theta}\cos(\theta) - ml\dot{\theta}^2\sin(\theta) + \frac{\left(\mu\theta + \eta\dot{\theta}\right)\cos(\theta)}{l},$$
$$\mathcal{F}_y = mg - ml\dot{\theta}^2\cos(\theta) - ml\ddot{\theta}\sin(\theta) - \frac{\left(\mu\theta + \eta\dot{\theta}\right)\sin(\theta)}{l}.$$

Założono również, że siła opisana poniższą formułą

$$f = \begin{cases} c (Mg + \mathcal{F}_y) \operatorname{Sign}(\dot{x}_C), & \operatorname{dla} \dot{x}_C \neq 0, \\ f_0, & \operatorname{dla} \dot{x}_C = 0. \end{cases}$$

reprezentuje siłę tarcie ślizgowego z wartością f_0 , gdy prędkość robota wynosi zero.

Wykorzystując formalizm Eulera-Lagrangea ruch ciała sztywnego można opisać w następujący sposób

$$\mathcal{M}(q)\ddot{q} + \mathcal{C}(q,\dot{q})\dot{q} + \mathcal{K}(q)q + \mathcal{G}(q) = \mathcal{B}u + \mathcal{V}, \tag{1}$$

gdzie:

$$\mathcal{M}(q) = \begin{bmatrix} ml^2 & -ml\cos(\theta) \\ -ml(\cos(\theta) + c \cdot \sin(\theta)) & (M+m) \end{bmatrix},$$
$$\mathcal{C}(q, \dot{q}) = \begin{bmatrix} 0 & 0 \\ ml(\sin(\theta) - c \cdot \cos(\theta))\dot{\theta} & 0 \end{bmatrix}, \quad \mathcal{K}(q) = \begin{bmatrix} \mu & 0 \\ -\frac{c\mu\sin(\theta)}{l} & 0 \end{bmatrix}$$
$$G(q) = \begin{bmatrix} -mgl\sin(\theta) \\ c(M+m)g \end{bmatrix}, \quad \mathcal{B} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \mathcal{V} = \begin{bmatrix} -\eta\dot{\theta} \\ \frac{c\eta\sin(\theta)\dot{\theta}}{l} \end{bmatrix}$$

oraz $\mathcal{M}(q) \in \mathbb{R}^{2\times 2}$ jest dodatnio określoną symetryczną macierzą bezwładności, $\mathcal{C}(q, \dot{q}) \in \mathbb{R}^{2\times 2}$ jest wektorem sił dośrodkowych i Coriolisa, $\mathcal{K}(q)$ jest uogólnioną macierzą sztywności, $\mathcal{G}(q) \in \mathbb{R}^{2\times 1}$ jest wektorem sił grawitacji, $\mathcal{V} \in \mathbb{R}^{2\times 1}$ jest macierzą momentów tarcia, $u = [u_1 u_2]^T \in \mathbb{R}^2$ jest wektorem sterowania, $q = [\theta x_C]^T \in \mathbb{R}^2$ jest wektorem przemieszczeń kątowych i liniowych.

Równanie (1) można wyrazić w postaci nieliniowego równania różniczkowego opisanego w poniższy sposób [3]

$$\frac{d}{dt} \begin{bmatrix} q\\ \dot{q} \end{bmatrix} = \begin{bmatrix} \dot{q}\\ \mathcal{M}^{-1}(q) \left[\mathcal{B}u + \mathcal{V} - \mathcal{C}(q, \dot{q})\dot{q} - \mathcal{G}(q) - \mathcal{K}(q)q \right]$$
(2)

Wówczas w celu zdefiniowania równania stanu wektor zmiennych stanu jest wyrażony przez $\begin{bmatrix} q & \dot{q} \end{bmatrix}^{\mathrm{T}}$.

Następnie równanie różniczkowego drugiego rzędu (2) można wyrazić w postaci odpowiadającego mu równania różniczkowego pierwszego rzędu z poniższymi zmiennymi stanu

$$x_1 = \theta$$
, $x_2 = x_C$, $x_3 = \dot{x}_1 = \dot{\theta}$, $x_4 = \dot{x}_2 = \dot{x}_C$, $x = \begin{bmatrix} q_1, q_2, \dot{q}_1, \dot{q}_2 \end{bmatrix}^T$

W rezultacie otrzymujemy równanie stanu opisujące robota typu capsubot w postaci macierzowego nieliniowego równania różniczkowego pierwszego rzędu

$$\dot{x} = F(x) + G(x)u. \tag{3}$$

3. Optymalizacja rojem cząstek

Algorytm optymalizacji rojem cząstek (*ang. Particle Swarm Optimization, PSO*) oparty jest na zachowaniu w populacjach ewolucyjnych, takich jak ławice ryb i stada ptaków. Takie podejście zostało przedstawione w [8], gdzie badano wyżej wymienione zachowanie roju. PSO zawiera rój cząstek poruszających się w przestrzeni S-wymiarowej, gdzie optymalizowana jest pewna miara jakości. Położenie i prędkość każdej cząstki są reprezentowane odpowiednio przez wektory $X_i = [x_{i1} \ x_{i2} \ \dots \ x_{iS}]$ i $V_i = [v_{i1} \ v_{i2} \ \dots \ v_{iS}]$. Ponadto, zakłada się, że wektor prędkości jest ograniczony przez wektor reprezentujący maksymalną wartość prędkości $V_{\text{max}} = [v_{\text{max1}} \ v_{\text{max2}} \ \dots \ v_{\text{maxS}}]$. Optymalna pozycja w danej chwili jest przechowywana w wektorze $P_i = [p_{i1} \ p_{i2} \ \dots \ p_{iS}]$ dla każdej cząstki. Najlepszą pozycję cząstki wśród innych reprezentuje wektor $P_g = [p_{g1} \ p_{g2} \ \dots \ p_{gS}]$. Aktualizację prędkości i położenia każdej cząstki otrzymuje się zgodnie z następującymi równaniami

$$v_{ij}(k+1) = wv_{ij}(k) + c_1r_1(p_{ij} - x_{ij}(k)) + c_2r_2(p_{gj} - x_{ij}(k))$$
$$x_{ij}(k+1) = x_{ij}(k) + v_{ij}(k+1), \qquad j = 1, \dots, \mathcal{S},$$

gdzie w jest współczynnikiem bezwładności, c_1 , c_2 są współczynnikami uczenia (nazywanymi, odpowiednio, kognitywnym i socjalnym), r_1 i r_2 są losowymi wartościami z przedziału [0, 1].

3.1. Wybrane wskaźniki regulacji

W literaturze znanych jest wiele wskaźników jakości, które odnoszą się do różnych wielkości i sygnałów występujących w układach sterowania [4, 19]. Jedną z grup takich wielkości są wskaźniki bazujące na przebiegach czasowych zmiennych mających wpływ na jakość sterowania (sygnał sterujący, uchyb regulacji, wyjście układu), które najczęściej są wyrażone w postaciach całkowych. Należą do nich **ISE** (*Integral of Squared Error*) [17] wyrażony wzorem (4)

$$I_{ISE} = \int_0^T e^2(t)dt, \qquad (4)$$

IAE (Integral of Absolut Error) [18] opisany formułą (5)

$$I_{IAE} = \int_0^T |e(t)| dt, \qquad (5)$$

ITAE (Integral of Time-weighted Absolut Error) [17] zdefiniowany wzorem (6)

$$I_{\text{ITAE}} = \int_0^T t |e(t)| dt \tag{6}$$

oraz funkcja dopasowania

$$I_{\rm F} = \min\left[a + \min(b) + \min(c) + \min(d)\right],\tag{7}$$

gdzie a jest czasem narastania, b jest czasem ustalania, c jest przeregulowaniem, d jest przeregulowaniem ujemnym [15].

4. Projekt układu sterowania

Głównym zadaniem regulatorów jest śledzenie pożądanych parametrów, takich jak trajektoria i prędkość capsubota. W prezentowanych badaniach zakłada się, że \dot{x}_C jest większe od zera. Wówczas wyrażenie (1) można przepisać w poniższy sposób

$$\begin{pmatrix}
ml^{2}\ddot{\theta} - ml\cos(\theta)\ddot{x}_{C} - mgl\sin(\theta) + \mu\theta + \eta\dot{\theta} = u \\
-ml\left[\cos(\theta) + c \cdot \sin(\theta)\right]\ddot{\theta} + (M + m)\ddot{x}_{C} + ml\left[\sin(\theta) - c \cdot \cos(\theta)\right]\dot{\theta}^{2} + c\left[(M + m)g - \frac{(\mu\theta + \eta\dot{\theta})\sin(\theta)}{l}\right] = 0.
\end{cases}$$
(8)

Model matematyczny capsubota opisany równaniem (8) jest nieliniowy. Stosując metodę S-Function w środowisku Matlab/Simulink oraz dodatek Model Linearizer otrzymano model zlinearyzowany dla punktu pracy $x = [0; 0, 009; 0; 0]^T$ (x_C wyrażone w metrach). Dla modelu liniowego wyznaczono dwie poniższe transmitancje

$$G_1(s) = \frac{\Theta(s)}{U(s)} = \frac{a_{10}}{b_{12} \cdot s^2 + b_{11} \cdot s + b_{10}},$$
(9)

$$G_2(s) = \frac{X_C(s)}{U(s)} = \frac{a_{22} \cdot s^2 + a_{21} \cdot s + a_{20}}{b_{24} \cdot s^4 + b_{23} \cdot s^3 + b_{22} \cdot s^2},$$
(10)

w których stałe a_{ij} i b_{ij} , i = 1, 2, j = 0, 1, ..., 4 zależą od parametrów capsubota.

Układ sterowania wykorzystuje regulator PID w formie równoległej opisany dobrze znaną formułą matematyczną

$$u(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau + K_d \frac{de(t)}{dt},$$
(11)

gdzie u(t) jest sterowaniem, e(t) jest błędem pomiędzy wielkością wyjściową, a wejściową, K_p , K_i i K_d są parametrami regulatora [5]. Funkcja przejścia dla regulatora PID w postaci ciągłej jest opisana poniższą formułą

$$G(s) = \frac{U(s)}{E(s)} = K_p + K_i \frac{1}{s} + K_d s.$$
 (12)

W celu wyznaczenia parametrów regulatora PID wykorzystano algorytm PSO z odpowiednimi wskaźnikami regulacji. W tym przypadku cząstka składa się z parametrów regulatora

$$P_i = \begin{bmatrix} K_p & K_i & K_d \end{bmatrix}.$$

Błąd e(t) jest różnicą między zadaną wartością żądanego kąta θ lub x_C pozycji capsubota, a zmierzonymi parametrami ruchu capsubota. Algorytm doboru parametrów regulatora działa do momentu uzyskania optymalnych wartości parametrów dla regulatora PID, zgodnie z przyjętym wskaźnikeim jakości regulacji w algorytmie PSO.

5. Wyniki symulacyjne

Wszystkie eksperymenty symulacyjne zostały wykonane w środowisku Matlab/Simulink. Przyjęto następujące parametry modelu matematycznego capsubota: M = 0.005 kg, m = 0.003 kg, $\mu = 0.5$, $\eta = 0.2$, $\mu_1 = 0.01$ i $g = 9.81 \frac{m}{s^2}$. Parametry algorytmu PSO użyte w symulacjach zostały ustalone na wartościach: liczba iteracji 60, wielkość populacji 30, parametry $c_1 = c_2 = 2$, wektory z maksymalnymi wartościami zostały przyjęte , odpowiednio, dla transmitancji (13) $V_{\text{max}} = [400 \ 20 \ 20]$ oraz dla (14) $V_{\text{max}} = [200 \ 10 \ 10]$.

Dla powyższych parametrów capsubota transmitancje (9) i (10) mają następującą postać

$$G_1(s) = \frac{\Theta(s)}{U(s)} = \frac{400}{s^2 + 395.3s + 1067},$$
(13)

$$G_2(s) = \frac{X_C(s)}{U(s)} = \frac{200s^2 + 49420s + 133400}{s^4 + 395.3s^3 + 1067s}.$$
(14)

Eksperymenty symulacyjne zostały powtórzone 50 razy dla każdej z transmitancji. Uzyskane optymalne parametry regulatora PID $[K_P; K_I; K_D]$ dla wybranych wskaźników jakości regulacji dla transmitancji (13) są następujące I_{ISE} : [966, 3; 34, 8; 27, 5], I_{IAE} : [310, 64; 17, 23; 4, 22], I_{ITAE} : [409, 03; 18, 8; 17, 3], I_F : [75, 54; 15, 3; 8, 05]. Natomiast optymalne parametry regulatora PID dla transmitancji (14) mają wartości I_{ISE} : [226, 25; 39, 8; 32, 04], I_{IAE} : [121, 6; 6; 1, 65], I_{ITAE} : [153.9; 0, 3; 3, 3], I_F : [772, 85; 37, 4; 22, 44]. Odpowiedź skokowa układu regulacji z regulatorem PID i transmitancją (13) przedstawiają rysunki 5a, 5b, a z transmitancją (14) rysunki 3a, 3b.

Rys. 3. Odpowiedź skokowa

Analizując powyższe przebiegi można wnioskować, że najlepszym wskaźnikiem jakości regulacji jest **IAE** ze względu na amplitudę przeregulowań i liczbę oscylacji w danym czasie. Na wykresach widać również, że odpowiedź skokowa nie osiągała wartości zadanej. Natomiast na rysunku 4 zamieszczono odpowiedzi skokowe układu sterowania

Rys. 4. Odpowiedź skokowa

z transmitancją (13), ale z parametrami regulatora PID otrzymanymi dla transmitancji (14), a rysunek 5 przedstawia odpowiedzi skokowe układu sterowania z transmitancją (14), ale z parametrami regulatora PID otrzymanymi dla transmitancji (13).

Rys. 5. Odpowiedź skokowa

6. Podsumowanie

W artykule przedstawiono układ sterowania w pętli zamkniętej robota typu capsubot z regulatorem PID, którego parametry uzyskano za pomocą algorytmu optymalizacji roju cząstek. Wybrano odpowiednie wskaźniki jakości regulacji w celu zminimalizowania błędu pomiędzy żądanym, a otrzymanym wektorem stanu robota.

W wyniku analizy można wnioskować, że odpowiedź skokowa zamkniętego układu sterowania z regulatorem PID posiada charakter oscylacyjny niezależnie od wybranego wskaźnika jakości regulacji w algorytmie PSO. Jak wiadomo, wybór algorytmów populacyjnych pociąga za sobą problem z powtarzalnością uzyskiwanych wyników oraz silną zależność wyniku od danych wejściowych dla algorytmu. Z drugiej strony zastosowanie algorytmów populacyjnych pozwala w szybki sposób uzyskać parametry danego regulatora zapewniające odpowiednią jakość regulacji.

LITERATURA

- 1. Atashpaz-Gargari E., Lucas C.: Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition. IEEE Congress on Evolutionary Computation (2007), p. 4661–4667.
- 2. Babiarz A.: A Note of A Legless Capsubot Robot Control. 26th International Conference on Methods and Models in Automation and Robotics (2022), accepted.
- 3. Babiarz A., Czornik A., Klamka J., Niezabitowski M.: Dynamics modeling of 3D human arm using switched linear systems. In Asian conference on intelligent information and database systems (2015), p. 258–267.
- 4. Jelali M.: An overview of control performance assessment technology and industrial applications. Control Engineering Practice, 14(5), 2006, p. 441–466.
- 5. Guenounou O., Dahhou B., Athmani B.: Optimal design of PID controller by Multi-objective genetic algorithms. International Conference on Computer Related Knowledge (2012), p. 6p.
- 6. Huda M.N., Yu H.: Trajectory tracking control of an underactuated capsubot. Autonomous Robots, 39, 2015, p. 183-–198.
- 7. Jeong S., Hyunchul C., Cheong L., Gwangjun G., Doo Sun S., Kyung Seob L., Myung Ho J., Seong Young K., Jong-oh P., Sukho P.: Therapeutic intravascular

microrobot through compensation of resistance and mutual inductance in electromagnetic actuation system. International Journal of Control, Automation and Systems, 13(6), 2015, p. 1465–1475.

- 8. Kennedy J., Eberhart R.: Particle swarm optimization. Proceedings of ICNN'95 International Conference on Neural Networks (1995), p. 1942–1948.
- Kim H. M., Yang S., Kim J., Park S., Cho J. H., Park J. Y., Kim T. S., Yoon E. S., Song S. Y., Bang S.: Active locomotion of a paddling-based capsule endoscope in an in vitro and in vivo experiment (with videos). Gastrointestinal endoscopy, 72(2), 2010, p. 381--387.
- Li H., Furuta K., Chernousko F. L.: Motion Generation of the Capsubot Using Internal Force and Static Friction. 45th IEEE Conference on Decision and Control (2006), p. 6575–6580.
- 11. Liu P., Yu H., Cang S.: Modelling and dynamic analysis of underactuated capsule systems with friction-induced hysteresis. IEEE/RSJ International Conference on Intelligent Robots and Systems (2016), p. 549–554.
- 12. Liu P., Yu H., Cang S.: On the dynamics of a vibro-driven capsule system. Archive of Applied Mechanics 88, 2018, p. 2199–2219.
- 13. Mahmoudzadeh S., Mojallali H.: An optimized PID for legless capsubots using modified imperialist competitive algorithm. International Conference on Robotics and Mechatronics (2013), p. 194–199.
- 14. Mahmoudzadeh S., Mojallali H., Pourjafari N.: An Optimized PID for Capsubots using Modified Chaotic Genetic Algorithm (RESEARCH NOTE). International Journal of Engineering 27(9), 2014, p. 1377–1384.
- 15. Mustafa N., Hashim F. H.: Design of a Predictive PID Controller Using Particle Swarm Optimization. International Journal of Electronics and Telecommunications, 66(4), 2020, p. 737–743.
- 16. Nunuparov A., Becker F., Bolotnik N., Zeidis I., Zimmermann K.: Dynamics and motion control of a capsule robot with an opposing spring. Archive of Applied Mechanics, 89(10), 2019, p. 2193–2208.
- 17. Seborg D. E., Edgar T. F., Mellichamp D. A., Doyle III F. J.: Process dynamics and control. John Wiley & Sons, 2016.
- 18. Shinners S. M.: Modern control system theory and design. John Wiley & Sons, 1998.
- 19. Starr K. D., Petersen H., Bauer M.: Control loop performance monitoring ABB's experience over two decades. IFAC-PapersOnLine, 49(7), 2016, p. 526-532.
- 20. Wang K., Yan G., Ma G., Ye D.: An earthworm-like robotic endoscope system for human intestine: design, analysis, and experiment. Annals of biomedical engineering, 37(1), 2009, p. 210–221.