
AUTOMATYZACJA PROCESÓW DYSKRETNYCH 2018

Tomasz PRIMKE
Politechnika Śląska

USING PROLOG FOR SCHEDULING TASKS IN PROJECT’S STAGES

Summary. In small IT teams, developing software, project management methods
are not formalized very well. Scheduling is usual done on demand, without prior
planning. For such cases, more formal scheduling methods are needed. Scheduling
problems are usually solved with various heristic algorithms. They allow to obtain
feasible solution in relatively short computation time, yet they do not guarantee
that the solution is optimal. Many scheduling problems in IT industry project ma-
nagement are relatively small in size, and thus it is interesting to search for optimal
schedule. In this paper, a Prolog program is proposed to solve the problem. A sche-
duling problem is described, and then the obtained results are presented.

WYKORZYSTANIE PROLOGA DO SZEREGOWANIA ZADAŃ W ETAPACH
PROJEKTÓW

Streszczenie. W małych zespołach z branży IT, zajmujących się rozwojem opro-
gramowania, metody zarządzania projektami nie są sformalizowane. Harmonogra-
mowanie zazwyczaj odbywa się na bieżąco, bez uprzedniego planowanowania.
Istnieje więc potrzeba sformalizowania stosowanych metod harmonogramowania.
Problem ten jest często rozwiązywany za pomocą metod heurystycznych. Pozwala-
ją one na wyznaczenie rozwiązania dopuszczalnego w stosunkowo krótkim czasie,
nie dają jednak gwarancji, że rozwiązanie jest optymalne. Wiele problemów har-
monogramowania, występujących podczas zarządzania projektami w branży IT,
cechuje stosunkowo niewielki rozmiar. Z tego względu można spróbować wyzna-
czyć rozwiązanie optymalne. W artykule zaproponowano program, napisany w ję-
zyku Prolog, do rozwiazania problemu harmonogramowania zadań w projektach.
Przedstawiono również uzyskane wyniki.

1. Introduction

Most companies in the IT industry are small enterprises. They develop various
software applications, usually for specific customers order. The whole process of de-
velopment is managed by a very small group of employees. The management process
requires specification of all the tasks. Scheduling of those tasks is usually done on de-
mand, without prior planning using some formal methods.

There are some general management methods, used in the IT industry. In par-
ticular, agile methods are very popular in projects management [4]. They seem to be

180 T. Primke

more effective, than the waterfall model, yet they do not focus on scheduling. A need
for formal, schedulng methods and algorithms for project management, is real. It should
be also noted, that projects in IT industry are performed in stages, and the number of
tasks in each stage is limited (relatively small in comarison to the total number of tasks
in project).

To address this need, two heuristic algorithms were described [5], both based on
the critical-path method. In this paper, a different approach is proposed for the same pro-
blem. The solutions obtained with heuristic algorithms seem to be of a good quality, and
the size of problems were rather small, although representative for real life cases. A new
question was asked: is it possible to solve the problem in a different way, and probably to
check, whether the obtained solution is the best one? To answer this question, a Prolog
program was written. The program is described in the section 4., and the obtained results
are presented in the section 5..

2. The scheduling problem

Most projects in IT industry are performed in stages, and each stage can be pre-
sented as a set of tasks. It can be assumed, that for each task, a processing time is esti-
mated. The precedence relations between tasks can be expressed in a form of graph, as
the one presented in the fig. 2.

In more formal way, it can be assumed, that a set of tasks T is given. For each
task i ∈ T , a processing time pi is specified. The precedence relations between tasks are
presented as a set of tuples P 3 (i, j), i ∈ T, j ∈ T, i 6= j. It should be noted, that for
each (i, j) ∈ P , the following constraint has to be met:

ci ¬ sj
where:

ci the completion time of the task i,

sj the start time of the task j.

Tasks are meant to be processed by employees (resources), so some set of resour-
ces R is given. It is assumed, that for each resource r ∈ R, a set of tasks Tr is specified,
and any task i ∈ Tr from this set can be performed on the resource r.

In such a model, two specific situations may occur. It is possible, that a task can
be performed on different resources. In this case, it is assumed, that the task’s processing
time is the same, regardless of the resource used. On the other hand, sometimes a parti-
cular task i is meant to be performed by a particular employee r. This situation, which
occurs quite often, can be easilly modelled by placing i in Tr only.

Of course, the sum of all sets Tr should be equal to the set of all tasks:⋃
r
Tr = T

A schedule can be defined as a set of tuples:

(i, r, si, ci) ∈ S

For all tuples in the set S, the following constraints should be met:

Using Prolog for Scheduling... 181

• once a task is started, on some resource, it will be completed without any interrup-
tions, on the same resource,

∀(i, r, si, ci) ∈ S, ci = si + pi

• a task should be performed on a proper resource,

∀(i, r, si, ci) ∈ S, i ∈ Tr

• only one task can be performed, on any resource, at any moment of time,

∀(i, r, si, ci) ∈ S,∀(j, r, sj, cj), i 6= j, ci ¬ sj ∨ cj ¬ si

• a task can be started, provided that all the preceding tasks have been completed,

∀(i, r, si, ci) ∈ S,∀j : (j, i) ∈ P, cj ¬ si

• a task is scheduled only once,

∀(i, r1, si, ci) ∈ S,@(j, r2, sj, cj) ∈ S, i = j ∧ si = sj

• all the tasks have been scheduled,

∀i ∈ T,∃(i, r, si, ci) ∈ S

• the earliest start moment, for any task, is zero

∀i ∈ T, si 0

The problem is to find a solution with a minimal makespan:

min← cmax = max
i
ci, i ∈ T

Such an objective is both simple to calculate, and refers to the due date for the
project’s stage, which is very important while project management.

The scheduling problem is similar to the well-known parallel machines schedu-
ling one [3]. The difference is made by the additional constraints, which prevent sche-
duling tasks on any resource. It is assumed, that each resource represents a different
employee, and employees can have different skills. Since each task requires particular
skills, the sets of tasks Tr should be derived from them.

For those reasons, and also some others, mentioned in [5], the presented problem
should be rather regarded as simplified, and used only for research purposes, or when
the limitations are not important.

182 T. Primke

3. Algorithms

There are many known algorithms and methods for solving scheduling problems.
Some of them, with some modifications, could be used even in case of problem describe
in the section 2..

In general, there are two ways to solve scheduling problems: using heuristic al-
gorithms, and using methods, which are able to find optimal solution.

The most popular way to solve scheduling problems are simple heuristic algori-
thms. They are usually very easy to design, since they are based on one or two simple
rules, and their implementation is also not very complex. For those reasons, many of
them may be used for the problem, and then obtained solutions can be compared.

Sometimes, more sophisticated algorithms are designed. They are more challen-
ging for both researchers and engineers, yet their results are often of better quality. Such
methods are usually dedicated for particular type of problems. For the problem, descri-
bed in section 2., two algorithms were proposed in [5].

Finally, some metaheuristic algorithms may be used, e.g. evolutionary algori-
thms (EA). They may be easier of more difficult to design, which leads to worse or
better results. In case of EA, the problem is in computational complexity. Although the
computation themselves are quite simple, there are a lot of them, and thus computation
time is enormous in comparison to heuristic algorithms mentioned before. The computa-
tion time is not a problem, since problems can be solved in acceptable time. Nowadays,
though, more and more popular are server-based solutions, where software is run on
external server, and provided as a service. In such environment, using EA instead of
much faster heuristic methods, could be justified only by much better quality of results.

In this paper, a different approach is described. Most scheduling problems are
NP-hard, and thus using heuristic algorithms is needed to solve problems of big size.
Heuristic algorithms are used as a compromise, between problem size and computation
time. Yet, in case of an IT project single stage management, the number of tasks to
schedule is a limited number, usually between 11 and 99. Hence the base question may
be asked: is it possible, both in research, and in real life, to use methods which allow to
obtain the optimal solution?

To answer this question, a simple program in Prolog was written.

Although Prolog was developed in early 1970s, it is not a very popular program-
ming language, and it never got to the mainstream software engineering. In opposite to
most modern languages, Prolog is declarative [2]. The Prolog program is, in fact, a mo-
del of problem to solve, and the mechanisms (algorithms) needed to solve the problem
are already built into Prolog runtime environment. So, to solve a problem usung Prolog,
it is enough to write a correct program. There is no need to implement any algorithms to
solve it.

For the problem, described in section 2., Prolog seems to be a good choice. Its
declarativity allows to describe of problem features and constraints as rules in a simple
way. The backtracking algorithm, built into the language, makes it easy to implement
combinatorial search algorithms. In fact, the implemented program has no other search
algorithms, besides the one provided by Prolog itself. And finally, there are many freely
available Prolog implementations (SWI-Prolog [7], GNU Prolog [6], and YAP [8] to

Using Prolog for Scheduling... 183

name a few). For this reason, it is possible to develop and use Prolog sofware without
paying high commercial fees.

4. Prolog solution

As it was mentioned in the section 3., Prolog program consists of predicates,
which are enough to solve the problem. Most of the predicates are very simple, and need
no detailed explanation. There are two main predicates, though, which are responsible
for solution search. They will be explained in this section.

The first one, low-level, is used to schedule next task. The scheme of procedure
(predicate) is presented in the fig. 1.

At the beginning, a list of all tasks, which can be scheduled, is constructed. A
task can be scheduled, provided that all its predecessors have been scheduled, or it has
no predecessors.

The task to schedule is chosen in the next step. In Prolog, this part was imple-
mented with the member/2 predicate, which can be used to choose a list element. The
predicate is able to succeed for all the elements in the list, so it creates a choice point,
which is inspected on automatic Prolog backtracking process.

Probably the most important part of the procedure, besides the choice point de-
scribed before, is calculating the start time of the task. Two factors are taken into consi-
deration here. The task cannot be started before all its predecessors are completed. For a
task without any predecessors, its earliest start time is assumed to be equal to 0. On the
other hand, the chosen task has to be scheduled on some resource. For this reason, the
earliest start time may be changed due to the resource availability, for the task’s duration
time.

The last step is simply scheduling the task on the resource, chosen in the previous
step.

The second predicate can be considered more high-level. It uses the low-level
scheduling predicate to schedule all the tasks. Scheduling is performed, until all the tasks
have been scheduled (the schedule is complete), or until the (partial) schedule makespan
in equal to some value, which is defined at the beginning of the scheduling process. The
first maximal value of makespan is calculated as the sum of all processing times. Then,
after the first feasible solution has been found, the new makespan is regarded as the
maximal value. Such procedure is repeated, until no solution can be found. The result is
the last makespan found.

All those predicates were written using only standard predicates. The program
can be run in any Prolog implementation, which conforms to the standard. No other
knowledge, besides the ability to load and run the program is needed, in order to use the
proposed solution.

5. Comparison to heuristic algorithms

The Prolog solution, described in the section 4., was tested by solving two exam-
ples, presented in the figures 2 and 3. It was assumed, that only two resources are availa-
ble. Two different sets of possible assignments were examined, presented in the table 1.

184 T. Primke

Find all the tasks,
which can be started

Choose a single task to be started

Find the time
moment to start the task

Schedule the task

Fig. 1. Scheduling procedure

The first set represents case, where some tasks can be performed only on one resource
(the tasks have been stressed in the table). It is a typical scenario in IT industry, while
managing projects. For comparison, the second set was prepared. In this set, all tasks
can be performed on any resource.

The same examples were solved using two heuristic algorithms [5]. Therefore,
the Prolog solutions will be compared to those results.

Table 1
Resources for tasks

Resource 1 (T1) Resource 2 (T2)
Dedicated 1, 2, 3, 4, 5, 6, 8, 10, 13 4, 6, 7, 9, 10, 11, 12, 13, 14
Universal 1 – 14 1 – 14

5.1. Results
The first, obvious comparison is the quality of obtained results. In the table 2, all

the known (best) results are presented. The Prolog program was able to obtain the best
results, obtained also by the heuristic algorithms. Thus, the quality of results is good
enough in case of Prolog.

It should be also noticed, that all the results, obtained with the heuristic algori-
thms, were the same (for the same problem instance). This is not the case for the Prolog
program, which was able to find all the solutions (and there were many, equally good
ones). It gives Prolog another advantage over heuristic algorithms.

The computation time, presented in the table 3, is very interesting. In both cases
with dedicated resources, the solution was obtained very fast (in fact it was less than 5

Using Prolog for Scheduling... 185

Table 2
Results

Example Resources set Alpha-best Beta-best Prolog

Separate branches Dedicated 155 155 155
Universal 147 147 147

Mixed branches Dedicated 182 180 180
Universal 160 160 160

Table 3
Computation time

Example Resources set Time Better start time

Separate branches Dedicated 5s 2s
Universal 45s 40s

Mixed branches Dedicated 5s 2s
Universal 90s 68s

seconds, as stated in the table). For universal resources, the computation times grows
up dractically. It can be concluded, that the more constraints in the solved problem, the
search space is smaller, and thus leads to faster solution search. Of course, in comparison
to Python computation time, which is counted in milliseconds, all Prolog solutions were
obtained after a very long time. The computation time below some level, though, does
not matter so much. Also, in real life problems, examples with universal resources are
extremely rare, especially in the IT industry, so the dedicated resources scenario is more
real.

The Prolog program tries to find a solution with better makespan, than some as-
sumed value. The initial value was the sum of all tasks processing times. The optimal, or
even a good makespan value may be hard to guess without some analysis. For the pro-
blems being solved, though, a good-quality solutions were known, since the problems
were also solved using heuristic algorithms. The obtained values were used as the initial
maximal makespan value for the Prolog program, and then solutions were obtained. The
computation times for this experiment are also presented in the table 3, in the column
"Better start time". This case can be regarded as the computation time needed to check,
that no better (than the best one) solution is available. It should be noted, that the compu-
tation times, altough better, are still much longer when compared to milliseconds needed
by the heuristic solutions implemented in Python.
5.2. Implementation

There were two different implementations available for solving problems, pre-
sented in the fig. 2 and 3. The first one was written in Pyhton, and used two heuristic
algorithms. The second one was written in Prolog. It is difficult to compare two im-
plementations, written in different programming languages, even when they are used to
solve the same problems, since they implement different algorithms. For those reasons,
the comparison described in this subsection, should be regarded as somewhat subjective.

The program is Prolog consists of 215 lines of code (LOCs), including blank

186 T. Primke

1(10)

2(20) 3(13)

4(50)

5(8)

6(10)

7(4)

8(30)

9(40)

10(4)

11(10)

12(22) 13(16)

14(14)

Fig. 2. A project with two separate branches

lines. It compares with 350 LOCs for Python implementation of both heuristic algori-
thms, since both programs are very small in size. The Prolog program was much easier
to write, though, since it was easier to find errors and to correct mistakes. Python imple-
mentation is more flexible, but also more error-prone. Both the LOCs, and other factors
mentioned, are not very precise metrics, yet they lead to significant differences in de-
velopment time. The Prolog implementation was written in about four hours, while the
Python one took eight hours to complete.

What was much easier to implement in Prolog, is general analysis of task’s pro-
perties, in particular precedence graph analysis. Prolog’s declarativity plays significant
role here, and gives programmer much better experience. It should be noted, though,
that using complex data structures in Prolog is less convenient, than in most modern
languages (like Python). Sometimes it influences choices made for data representation.

In general, the experience with Prolog was very interesting and satisfying. The
time spend on development in Python was twice as much, as in Prolog, while the final
results are the same.

6. Conclusions

In this paper, a Prolog program was proposed to solve two different scheduling
problems, related to IT projects management. The main goal was to obtain the best
possible solution, and make sure, that no better one is available. It was achieved, and the
quality of obtained results was satisfying.

The Prolog solution solved the most difficult problem, that was encountered in
the heuristic algorithms: assignement of tasks to resources. The solution was simple and
natural: using standard Prolog predicates, and letting Prolog do the job. It shows, that
Prolog is better tool for this problem.

Probably the most important problem of the presented Prolog solution is com-
putation time for the "universal resources" scenario. Although such cases are extremely

Using Prolog for Scheduling... 187

1(10)

2(20) 3(13)

4(50) 9(40) 10(4) 5(8) 7(4)

13(16)

8(30)

14(14)

6(10)

11(10) 12(22)

Fig. 3. A project with mixed branches

rare, this problem will be addressed in future research.
The computation times of Prolog solution, for the dedicated resources scenario,

seems to be acceptable. Of course, more research is needed, to check the influence of
problem size on those times. Yet the difference between heuristic algorithms, and Pro-
log, although huge, is not that important in real project management. Any company,
using dedicated sofware, could afford to wait a few seconds to obtain solution. On the
other hand, nowadays more and more popular are services, which offer remote software
access. Such sofware is run on servers, and in such cases, even milliseconds may be im-
portant. For this type of applications, the answer, whether Prolog solution is still viable
option, may depend on particular case.

Praca finansowana jest ze środków przewidzianych na BK-204/RAu1/2017 - temat 9.

REFERENCES

1. Lippman D.: Math in Society. David Lippman, 2013,
http://www.opentextbookstore.com/mathinsociety/

2. Niederliński A.: A Gentle Guide to Constraint Logic Programming via ECLiPSe.
Jacek Skalmierski Computer Studio, Gliwice, 2014.

3. Pinedo M.L.: Scheduling: Theory, Algorithms, and Systems. Springer, London
2016.

4. Rubin S.K.: Essential Scrum. A Practical Guide to the Most Popular Agile Proces-
ses. Addison-Wesley, 2012.

5. Primke T.: Two Heuristic Algorithms for Scheduling Tasks in Projects.

6. GNU Prolog, http://www.gprolog.org/

7. SWI-Prolog, http://www.swi-prolog.org/

8. YAProlog, http://www.dcc.fc.up.pt/ vsc/Yap/

