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EVOLUTIONARY ALGORITHM FOR JOINT TASK SCHEDULING  

AND DEPLOYMENT OF EXECUTORS 

 

Summary. The basis for considerations is the classical problem of task 

scheduling on many identical executors with different release dates and the total 

completion time as the objective function. There has been considered its 

generalization considering the spatial location of both jobs and executors as well 

as leading to two dependent subproblems: task scheduling and deployment 

of executors. An evolutionary algorithm has been proposed. Its evaluation via 

numerical experiments is provided including the comparison with the 

performance of the CPLEX CP Optimizer solver. 

 

ALGORYTM EWOLUCYJNY DLA ŁĄCZNEGO PROBLEMU 

SZEREGOWANIA ZADAŃ I ROZMIESZCZENIA REALIZATORÓW 

 

Streszczenie. Podstawą rozważań jest klasyczne zagadnienie szeregowania 

zadań na wielu identycznych realizatorach z różnymi momentami gotowości 

i kryterium w postaci sumy terminów zakończenia zadań. Rozpatrzono jego 

uogólnienie, polegające na uwzględnieniu przestrzennej lokalizacji zarówno 

zadań jak i realizatorów i prowadzące do dwóch zależnych podproblemów: 

szeregowania zadań i rozmieszczenia realizatorów. Zaproponowano ewolucyjny 

algorytm rozwiązania i eksperymentalnie oceniono jego jakość poprzez 

porównanie z działaniem solvera CPLEX CP Optimizer. 

 

1. Introduction 

 

Nowadays, the task scheduling, as well as the facility location called in this work 

also the deployment of executors (machines) are widely known optimal 

decision-making problems which are crucial elements in strategic planning for logistic 

systems, e.g. [1,5,12]. They play a significant role in production and manufacturing 

systems as well as in information processing environments. A sequential solving 

of both problems is the most common approach when the deployment of executors 

is followed by the task scheduling. Then, locations of executors as solutions 

of a facility location problem with a distance-based criterion are data for the classical 

task scheduling. However, a simple analysis shows that the optimal solution of the 

joint problem, when the task scheduling criterion is only taken into account, may not 

be composed of optimal results of mentioned individual issues. 
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Such a generally outlined joint problem of task scheduling and deployment 

of executors referred to as ScheLoc (Scheduling and Location) has been firstly 

presented in [7]. It can also be defined as a particular case of task scheduling problems 

with different release dates, the value of which depends on the location of the executor 

(a single executor has been only taken into account). The approach with discrete 

executor positions presented in [7] is based on the graph model, the vertices of which 

represent the job storage locations. The algorithm of the polynomial complexity 

developed there used the ERD (Earliest Release Date) rule and was limited to the case 

with the makespan as the objective function. In [3] and [4] a polynomial algorithm for 

solving the ScheLoc problem in continuous space to minimize the makespan was 

proposed. Its authors also used the ERD rule as the solution algorithm. A geometric 

method based on the branch and bound technique can be found in [15]. A solution 

similar to this one is presented in [10]. It is based on the BTST (Big Triangle Small 

Triangle) algorithm [2] and allows obtaining results for cases of the joint task 

scheduling and deployment of executors with the makespan or the total completion 

time as the criterion. The case studies with many identical executors were carried out 

by the authors of [14]. The proposed mathematical model allows finding a solution 

in both continuous and discrete space for the makespan as the criterion. The unloading 

of ships by cranes can be mentioned as an example of real-world applications. Ships 

waiting for the unloading at sea can be treated as jobs. Locations at an embankment for 

cranes as executors need the determination as well as the order of service of ships after 

their reaching the embankment. 

In this paper, the new version of ScheLoc is considered with many executors and 

the sum of completion times as the criterion. It directly refers to [14] and [10]. The 

differences consist in the criterion and the number of executors. The makespan and 

a single executor as the only differences to our problem are assumed in [14] and [10], 

respectively. Moreover in this paper, an evolutionary algorithm is presented that 

allows solving the considered joint problem. 

The reminder of the paper is organized as follows. The next section provides the 

mathematical model of the considered joint optimization problem. Then in Sections 

3 and 4, the description of the heuristic evolutionary algorithm and its evaluation via 

series of numerical experiments are respectively given. Final remarks complete the 

paper. This work comprises selected results widely presented in the master thesis [12].  

 

2. Problem formulation 

 

Let us specify a set of 𝑛 jobs 𝐽 = {𝐽1, 𝐽2, … , 𝐽𝑗 , … , 𝐽𝑛}. Each job has 

to be performed without preemptions by a single executor (machine) taken from a set 

𝑀 = {𝑀1, 𝑀2, … , 𝑀𝑖 , … , 𝑀𝑚} of 𝑚 identical executors (machines). It is assumed that 

each job 𝐽𝑗 has a fixed location 𝑎𝑗 = [𝑎𝑗
(1)

, 𝑎𝑗
(2)

] ∈ ℝ2 and is characterized by the 

processing time 𝑝𝑗 > 0, the ready time 𝜎𝑗 ≥ 0, and the travel speed 𝑣𝑗 > 0, i.e. the rate 

of the position change expressed as a distance per unit time. For the executors, their 

locations 𝑥𝑖 = [𝑥𝑖
(1)

, 𝑥𝑖
(2)

] ∈ ℝ2, 𝑖 ∈ {1, 2, … , 𝑚} have to be determined. It is assumed 

that all executors have to be located within the defined area 𝑆 = {𝑥 = [𝑥(1), 𝑥(2)] ∈

ℝ2 | 𝑥𝑚𝑖𝑛
(1)

≤ 𝑥(1) ≤ 𝑥𝑚𝑎𝑥
(1)

 ∧  𝑥𝑚𝑖𝑛
(2)

≤ 𝑥(2) ≤ 𝑥𝑚𝑎𝑥
(2)

}, 𝑥𝑚𝑖𝑛
(1)

, 𝑥𝑚𝑎𝑥
(1)

, 𝑥𝑚𝑖𝑛
(2)

, 𝑥𝑚𝑎𝑥
(2)

∈ ℝ. 



Algorytm ewolucyjny dla łącznego problemu … 171 
 

Assuming that 𝑑(𝑎𝑗 , 𝑥𝑖) = √(𝑎𝑗
(1)

− 𝑥𝑖
(1)

)
2

+ (𝑎𝑗
(2)

− 𝑥𝑖
(2)

)
2

 is the distance 

between the location of 𝑗th job and the position of 𝑖th executor, the variable release 

dates can be calculated as follows 

𝑟𝑗(𝑥𝑖) = 𝜎𝑗 +
1

𝑣𝑗

𝑑(𝑎𝑗 , 𝑥𝑖), ∀𝑖 ∈ {1, 2, … , 𝑚}, ∀𝑗 ∈ {1, 2, … , 𝑛}. (1) 

The sequence of jobs to be performed on the 𝑖th executor can be defined by the 

permutation 𝜋𝑖 = (𝜋𝑖
(1)

, 𝜋𝑖
(2)

, … , 𝜋𝑖

(𝑙𝑖)
) where ∑ 𝑙𝑖

𝑚
𝑖=1 = 𝑛, and 0 ≤ 𝑙𝑖 ≤ 𝑛 denotes the 

number of jobs performed by this executor. The entry 𝜋𝑖
(𝑘)

= 𝑗 means that the job 

𝐽𝑗 is performed by executor 𝑀𝑖 as the 𝑘th. Two sets 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑚} and Π =
{𝜋1, 𝜋2, … , 𝜋𝑚} are decision variables. The completion times for all jobs can 

be calculated using the following recursive formula 

𝐶
𝜋𝑖

(1)(𝑥𝑖) = 𝑟
𝜋𝑖

(1)(𝑥𝑖) + 𝑝
𝜋𝑖

(1) , ∀𝑖 ∈ {1, 2, … , 𝑚}, (2) 

𝐶
𝜋𝑖

(𝑘)(𝑥𝑖) = max {𝐶
𝜋𝑖

(𝑘−1)(𝑥𝑖), 𝑟
𝜋𝑖

(𝑘)(𝑥𝑖)} + 𝑝
𝜋𝑖

(𝑘) ,   𝑖 = 1, 𝑚̅̅ ̅̅ ̅̅ ,  𝑘 = 2, 𝑛̅̅ ̅̅ ̅. (3) 

The total completion time ∑ 𝐶𝑗 has been chosen as the objective function 𝑓(𝑋, Π) 

which evaluates decisions 𝑋 and Π. It can be expressed as follows 

𝑓(𝑋, Π) = ∑ ∑ 𝐶
𝜋𝑖

(𝑘)(𝑥𝑖)

𝑙𝑖

𝑘=1

𝑚

𝑖=1

. (4) 

Hence, the described optimization problem in Graham’s triplet notation [6] can 

be written as 𝑃𝑚 | 𝑟𝑗(𝑥) |  ∑ 𝐶𝑗. 

Let us denote as 𝐷𝑃 all data of the problem, i.e., set of jobs 𝐽, set of executors 

𝑀, job locations 𝑎𝑗, processing times 𝑝𝑗, ready times 𝜎𝑗, travel speeds 𝑣𝑗, and area 

𝑆 for the deployment of executors. Then, the considered optimization problem deals 

for given 𝐷𝑃 with finding such a pair (𝑋∗, Π∗) which minimize (4), i.e., 𝑓∗ ≜
𝑓(𝑋∗, Π∗) = min(𝑋,Π) 𝑓(𝑋, Π).  

Proposition. 𝑃𝑚 | 𝑟𝑗(𝑥) |  ∑ 𝐶𝑗 is strongly NP-hard optimization problem. 

Proof. The NP complexity in a strong sense results immediately from such property 

for both sub-problems. Namely, 𝑃𝑚 | 𝑟𝑗  | ∑ 𝐶𝑗 and the multifacility location problem 

are strongly NP-hard, as it is reported in [13] and [5], respectively. □ 

The 𝑃𝑚 | 𝑟𝑗(𝑥) |  ∑ 𝐶𝑗 problem can also be described using mixed-integer linear 

programming model based on the mathematical model included in the paper [11]. 

Then, binary optimization variables are defined, which are elements of the three-

dimensional decision matrix 𝑊 = [𝑤𝑗𝑖𝑘]
𝑗=1,2,…,𝑛;𝑖=1,2,…,𝑚;𝑘=1,2,…,𝑛

, where 𝑤𝑗𝑖𝑘 = 1, 

if the 𝑗th job is scheduled on the 𝑖th executor as the 𝑘th and 𝑤𝑗𝑖𝑘 = 0 otherwise. 

Therefore, each executor has 𝑛 virtual positions on which jobs can be performed. 

In addition, there is also defined the vector of continuous variables 

𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑚]𝑇, whose elements represent the positions of each executor and the 
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matrix of variables 𝐶 = [𝐶𝑖𝑘]𝑖=1,2,…,𝑚;𝑘=1,2,…,𝑛, where the element 𝐶𝑖𝑘 is the completion 

time of a job which is performed by the 𝑖th executor as the 𝑘th. 

The objective function in this case is expressed as 

𝑓(𝐶) = ∑ ∑ 𝐶𝑖𝑘

𝑛

𝑘=1

𝑚

𝑖=1

, (5) 

and the following constraints are imposed on decision variables 

∑ ∑ 𝑤𝑗𝑖𝑘

𝑛

𝑘=1

𝑚

𝑖=1

= 1, ∀𝑗 ∈ {1, 2, … , 𝑛}, (6) 

∑ 𝑤𝑗𝑖𝑘

𝑛

𝑗=1

≤ 1, ∀𝑖 ∈ {1,2, … , 𝑚}, ∀𝑘 ∈ {1, 2, … , 𝑛}, (7) 

𝐶𝑖𝑘 ≥ ∑(𝑟𝑗(𝑥𝑖) + 𝑝𝑗)𝑤𝑗𝑖𝑘

𝑛

𝑗=1

, ∀𝑖 ∈ {1,2, … , 𝑚}, ∀𝑘 ∈ {1, 2, … , 𝑛}, (8) 

𝐶𝑖𝑘 ≥ 𝐶𝑖(𝑘−1) + ∑ 𝑝𝑗𝑤𝑗𝑖𝑘

𝑛

𝑗=1

, ∀𝑖 ∈ {1, 2, … , 𝑚}, ∀𝑘 ∈ {2, 3, … , 𝑛}, (9) 

𝐶𝑖𝑘 ≥ 0, ∀𝑖 ∈ {1, 2, … , 𝑚}, ∀𝑘 ∈ {1, 2, … , 𝑛}, (10) 

𝑥𝑖 ∈ 𝑆, ∀𝑖 ∈ {1, 2, … , 𝑚}, (11) 

𝑤𝑗𝑖𝑘 ∈ {0, 1}, ∀𝑖 ∈ {1, 2, … , 𝑚}, ∀𝑗, 𝑘 ∈ {1, 2, … , 𝑛}. (12) 

Constraints (6) and (7) ensure that each job is performed on exactly one position 

of exactly one executor and a maximum of one job can be performed on each position 

of each executor, respectively. Moreover, in a feasible solution, the 𝑘th in order job 

on the 𝑖th executor cannot start before its release date or the completion time of a job 

which is scheduled on the 𝑘 − 1 position of the same executor. This condition is met 

by constraints (8) and (9). Finally, constraints (10), (11) and (12) define the domains 

of all decision variables. 

Hence, the joint task scheduling and deployment of executor deals for given 

𝐷𝑃 with finding such a vector 𝑋 and matrix 𝑊, which satisfy constraints (6)–(12), 

to minimize (5). 

 

3. Evolutionary algorithm 

 

Such high computational complexity of the considered problem justifies the 

searching of heuristic methods that allow receiving solutions in an acceptable time. 

Consequently, the evolutionary approach has been employed for the elaboration of the 

heuristic solution algorithm. 

The representation of the problem in the developed evolutionary algorithm 

consists of two parts. The first one is the genotype stored as a sequence 𝐺 =

(𝑔1, 𝑔2, … , 𝑔2𝑛, 𝑔2𝑛+1, … , 𝑔2(𝑛+𝑚)), 𝑔𝑘 ∈ [0, 1], 𝑘 ∈ {1, 2, … ,2𝑛, 2𝑛 + 1, … , 2(𝑛 +
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𝑚)}. Each two elements 𝑔2𝑗−1 and 𝑔2𝑗, 𝑗 ∈ {1, 2, … , 𝑛} represent the jobs, and they are 

respectively the priority of processing this job and the number of assigned executor. 

The pairs of elements 𝑔2(𝑛+𝑖)−1 and 𝑔2(𝑛+𝑖), 𝑖 ∈ {1, 2, … , 𝑚} express the values 

of coordinates of the 𝑖th executor’s location after the normalization to the interval 
[0, 1]. 

Due to the fact that the case of ScheLoc problem with a single executor does not 

require the assignment of executors to jobs, the genotype is then reduced to sequence 

𝐺 = (𝑔1, 𝑔2, … , 𝑔𝑛+2 ). Hence, the elements from 𝑔1 to 𝑔𝑛 denote the priorities 

of corresponding jobs, and 𝑔𝑛+1 and 𝑔𝑛+2 are the values of the first and the second 

coordinate of the executor’s location after the normalization to the interval [0, 1]. 
The second part of the problem representation is the phenotype that is the pair 

(𝑋, Π) consisting of the set of points 𝑋 at a plane, in which executors are located, and 

sequences Π indicating the order of performing the jobs by executors. 

Transformation of the genotype into a phenotype consists of two stages. First 

of all, the first 2𝑛 elements from the genotype have to be split into pairs of elements 

(𝑔2𝑗−1, 𝑔2𝑗), 𝑗 ∈ {1, 2, … , 𝑛}. Next, they are divided into 𝑚 sequences based on the 

value of the second component of each pair. If the inequality 𝑔2𝑗 ≤
𝑖

𝑚
, ∀𝑖 ∈

{1, 2, … , 𝑚}, ∀𝑗 ∈ {1, 2, … , 𝑛} is satisfied, the 𝑖th executor is assigned to the 𝑗th job. 

Next, the elements of each sequence are sorted in the non-increasing order based 

on the value of element 𝑔2𝑗−1, 𝑗 ∈ {1, 2, … , 𝑛}. For the case with one executor, the 

assignment phase is omitted, and the order of jobs is determined according to the 

non-increasing order of the corresponding values of the genotype. 

The second stage of the transformation is related to the conversion of the values 

of the next 2𝑚 elements of the genotype to the actual coordinates of the location of all 

executors. This is done using the following expressions 

𝑥𝑖
(1)

= 𝑔2(𝑛+𝑖)−1 ∗ (𝑥𝑚𝑎𝑥
(1)

− 𝑥𝑚𝑖𝑛
(1)

) + 𝑥𝑚𝑖𝑛
(1)

, ∀𝑖 ∈ {1, 2, … , 𝑚}, (13) 

𝑥𝑖
(2)

= 𝑔2(𝑛+𝑖) ∗ (𝑥𝑚𝑎𝑥
(2)

− 𝑥𝑚𝑖𝑛
(2)

) + 𝑥𝑚𝑖𝑛
(2)

, ∀𝑖 ∈ {1, 2, … , 𝑚}. (14) 

The initialization of the evolutionary algorithm consists in the random generation 

of 𝑁𝑃𝑜𝑝 > 0 solutions in the form of the genotype. Their features are encoded as real 

numbers obtained from continuous uniform distribution 𝑈(0, 1). The selection method 

is based on the tournament operator of 𝑁𝑇𝑢𝑟 > 1 individuals. The definition of the 

crossover operator uses the BLX-𝛼 (Blend Crossover) method which was described 

in [8]. It involves the generation of two offspring individuals based on parental 

solutions through drawing values from the continuous uniform distributions which 

ranges for 𝛼 ∈ ℝ+ are determined in the following way  

[𝑔𝑘
𝑚𝑖𝑛 − 𝛼Δ𝑔𝑘, 𝑔𝑘

𝑚𝑎𝑥 + 𝛼Δ𝑔𝑘], ∀𝑘 ∈ {1, 2, … , |𝐺|}, (15) 

Δ𝑔𝑘 = 𝑔𝑘
𝑚𝑎𝑥 − 𝑔𝑘

𝑚𝑖𝑛, ∀𝑘 ∈ {1, 2, … , |𝐺|}, (16) 

𝑔𝑘
𝑚𝑖𝑛 = min{𝑔𝑘

(1)
, 𝑔𝑘

(2)
} , ∀𝑘 ∈ {1, 2, … , |𝐺|}, (17) 

𝑔𝑘
𝑚𝑎𝑥 = max{𝑔𝑘

(1)
, 𝑔𝑘

(2)
} , ∀𝑘 ∈ {1, 2, … , |𝐺|}. (18) 

If the obtained boundary values go beyond the domain of genotype elements, they are 

appropriately equated to 0 or 1. The entire procedure is performed after fulfilling the 



174  B. Piasecki, J. Józefczyk 
 

crossover probability 𝜇𝑐 ∈ [0, 1] condition. The mutation of the solution consists 

in iterating all elements of the genotype and drawing a new value from the continuous 

uniform distribution 𝑈(0, 1) only after the mutation probability 𝜇𝑚 ∈ [0, 1] condition 

is fulfilled. The evolutionary algorithm stops after elapsing 𝑁𝐺𝑒𝑛 > 0 generations 

or when the maximum number of generations without improving the best-obtained 

result 𝑁𝑐𝑜𝑛𝑠𝑡 is exceeded. The latter value is computed by the following formula 

𝑁𝑐𝑜𝑛𝑠𝑡 = ⌈𝑢𝑐𝑜𝑛𝑠𝑡 ∗ 𝑁𝐺𝑒𝑛⌉, (19) 

where 𝑢𝑐𝑜𝑛𝑠𝑡 ∈ [0, 1] is an additional percentage parameter of the algorithm.  

Assuming that the parameters of the evolutionary algorithm are fixed, it has 

a computational complexity equals to 𝑂(𝑛𝑙𝑜𝑔𝑛 + 𝑛𝑚). It is also simplified to the 

linear-log time complexity 𝑂(𝑛𝑙𝑜𝑔𝑛) when solving a problem with a single executor. 

The operation of the entire developed algorithm is shown as the following pseudocode. 

 

Algorithm 1 (evolutionary algorithm) 

Require: 𝑁𝐺𝑒𝑛, 𝑁𝑃𝑜𝑝, 𝑁𝑇𝑢𝑟, 𝛼, 𝜇𝑐, 𝜇𝑚, 𝑢𝑐𝑜𝑛𝑠𝑡, 𝑛, 𝑚 and data of the problem 𝐷𝑃 

Ensure: 𝑓EVO,  𝑋EVO,  ΠEVO 

1: Let 𝑁𝑐𝑜𝑛𝑠𝑡 be equal to the ceiling value of 𝑁𝐺𝑒𝑛 multiplied by 𝑢𝑐𝑜𝑛𝑠𝑡. 

2: Set 𝑘𝐺𝑒𝑛 ← 0. 

3: Set 𝑘𝑐𝑜𝑛𝑠𝑡 ← 0. 
4: Set 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒(𝑁𝑃𝑜𝑝, 𝑛, 𝑚). 

5: Set (𝑋EVO, ΠEVO) ← 𝐺𝑒𝑡𝐵𝑒𝑠𝑡𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒(𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝐷𝑃) 

6: Set 𝑓𝐸𝑉𝑂 ← 𝑓(𝑋𝐸𝑉𝑂 , Π𝐸𝑉𝑂). 

7: while 𝑘𝐺𝑒𝑛 < 𝑁𝐺𝑒𝑛 and 𝑘𝑐𝑜𝑛𝑠𝑡 < 𝑁𝐶𝑜𝑛𝑠𝑡 do: 

8: set 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ← 𝐶𝑟𝑒𝑎𝑡𝑒𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑁𝑃𝑜𝑝, 𝑁𝑇𝑢𝑟 , 𝛼, 𝜇𝑐, 𝜇𝑚), 

9: set (𝑋, Π) ← 𝐺𝑒𝑡𝐵𝑒𝑠𝑡𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒(𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝐷𝑃), 

10: if 𝑓(𝑋, Π) < 𝑓(𝑋EVO, ΠEVO) then: 

11: set (𝑋EVO, ΠEVO) ← (𝑋, Π), 

12: set 𝑓𝐸𝑉𝑂 ← 𝑓(𝑋, Π), 

13: set 𝑘𝑐𝑜𝑛𝑠𝑡 ← 0, 

14: else 
15: set 𝑘𝑐𝑜𝑛𝑠𝑡 ← 𝑘𝑐𝑜𝑛𝑠𝑡 + 1, 

16: end if 

17: 𝑘𝐺𝑒𝑛 ← 𝑘𝐺𝑒𝑛 + 1, 

18: end while 

 

4. Experimental evaluation 

 

The goal of the performed numerical experiments was to assess the quality of the 

obtained solutions and the algorithm’s computational time for different values 

of selected problem’s parameters. In particular, the comparison with corresponding 

results generated by the CPLEX CP Optimizer solver ([9]) has been performed. All 

required calculations were carried out on the computer with the 2,4GHz i7-3630QM 

processor equipped with 8GB of RAM. Values of the objective function 𝑓 and the 

time of operation 𝑡 as evaluations of both algorithms were collected. They were then 

averaged out of 500 repetitions for the evolutionary algorithm. The work of the solver 
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was interrupted after 1 hour. Additionally, the values of 𝑁𝐺𝑒𝑛, 𝑁𝑃𝑜𝑝, 𝑁𝑇𝑢𝑟, 𝛼, 𝜇𝑐, 𝜇𝑚 

and 𝑢𝑐𝑜𝑛𝑠𝑡 parameters of the evolutionary algorithm were tuned for each data set 

according to the function that had been prepared earlier and described in [12]. During 

the comparative study, the relative percentage difference between the solutions 

obtained by the solver and the evolutionary algorithm was calculated using the 

following performance index 𝛿 = (𝑓EVO − 𝑓CP)/𝑓CP ⋅ 100% where 𝑓CP and 𝑓EVO are 

the values of the objective function obtained by the used solver and the evolutionary 

algorithm, respectively. The dependence of 𝛿 and 𝑡 on 𝑛 and 𝑚 has been verified 

during the experiment.  

The research was carried out on randomly generated data sets according to the 

continuous uniform distribution. By default, 𝑛 = 100 and 𝑚 = 2 were assumed. The 

storage locations 𝑎𝑗 of jobs were generated in the grid layout on the plane [0, 1000] ×
[0, 1000], the processing times 𝑝𝑗 were selected from the interval [1, 51] and the 

storage arrival times were set to 𝜎𝑗 = 0 for all jobs. The travel speeds 𝑣𝑗 were 

calculated using the parameter 𝛾 = 1, which denotes the coefficient of approximation 

of travel and performing times for each job. This was done by the following 

expression 

𝑣𝑗 =
1

𝛾𝑝𝑗

𝑑 (𝑎𝑗 , 𝑐(𝑆)) , ∀𝑗 ∈ {1, 2, … , 𝑛} (20) 

where 𝑐(𝑆) is the central point of the executors deploying area 𝑆 which was also set 

as constant and equals 𝑆 = {[𝑥(1), 𝑥(2)] | 𝑥(1) ∈ [347.16, 637.91]  ∧  𝑥(2) ∈

[207.23, 553.74]}. The results are presented in Tables 1 and 2. They show that the 

evolutionary algorithm works relatively repetitively in terms of the received objective 

function values. This is confirmed by the obtained values of standard deviations which 

are on average at the level of 1 − 2% of the average values of the criterion. 

Comparing the quality of the proposed algorithm in relation to the CPLEX 

CP Optimizer solver, it can be noticed that for 𝑛 ≥ 20 it obtained on average better 

solutions than the solver, and these differences are rapidly growing in favor of the 

evolutionary algorithm as the number of jobs increases. Also, the solver 

is characterized by a very fast increase in the computational time, which for 𝑛 ≥ 12 

met a time limitation on the used platform, so that it was not able to return the optimal 

solutions. Whereas, the evolutionary algorithm, even for 𝑛 = 100, can cope with this 

problem in about 8 seconds. 

Table 1 

Dependence of 𝑓, 𝑡, and 𝛿 on 𝑛 

𝑛 
𝑓𝐸𝑉𝑂 𝑡𝐸𝑉𝑂[𝑠] 

𝑓𝐶𝑃 𝑡𝐶𝑃[𝑠] 𝛿 
AVG STD AVG STD 

6 329.95 7.20 1.16 0.33 325.79 94.22 1,28% 

8 455.04 22.00 1.34 0.40 434.53 29.64 4,72% 

10 565.95 9.08 1.48 0.42 539.41 565.38 4,92% 

12 740.33 11.87 1.60 0.52 721.65 3600.03 2,59% 

14 960.82 15.22 1.77 0.60 936.07 3600.03 2,64% 

16 1162.42 16.20 2.00 0.62 1133.88 3600.05 2,52% 
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18 1515.56 16.67 2.16 0.75 1489.09 3600.05 1,78% 

20 1998.51 19.34 2.39 0.79 2013.26 3600.06 -0,73% 

40 6278.21 27.87 4.61 1.45 6409.91 3600.20 -2,05% 

60 14820.04 47.19 6.77 1.63 15195.42 3600.47 -2,47% 

80 26251.32 67.27 6.86 1.61 33288.86 3600.87 -21,14% 

100 42620.07 116.20 7.89 1.91 66831.53 3601.25 -36,23% 

 

Table 2 

Dependence of 𝑓 and 𝑡 on 𝑚 for the evolutionary algorithm 

𝑚 
𝑓𝐸𝑉𝑂 𝑡𝐸𝑉𝑂[𝑠] 

AVG STD AVG STD 
1 104228.59 40.73 7.05 0.60 

2 53254.13 120.57 7.97 1.82 

3 36414.41 169.97 7.23 1.68 

5 23072.40 197.21 6.83 1.69 

8 15695.99 201.88 6.35 1.60 

10 13286.60 195.27 6.31 1.65 

15 10115.38 174.48 6.28 1.60 

20 8602.81 171.58 6.31 1.65 

25 7738.44 152.36 6.38 1.71 

30 7172.22 144.59 6.58 1.75 

40 6514.16 129.64 6.97 1.96 

50 6133.97 109.85 7.56 1.94 

 

As the conclusions of the experiments, it is worth noting that growing the 

number of jobs 𝑛 increases values of both the criterion and the computational time. 

The employment of more number of executors results in decreasing the value 

of criterion which is initially rapid, but it slows down for 𝑚 ≥ 15. However, this 

is connected with increased computational times. 

 

5. Final remarks 

 

This paper investigates the joint problem of task scheduling and deployment 

of many identical executors in a two-dimensional continuous space. There was 

proposed the evolutionary algorithm allowing for solving this computationally difficult 

problem. As a result of the experimental evaluation, it was shown that the developed 

evolutionary algorithm is only slightly worse than the exact algorithm represented 

by the solver. Additionally, it can give even better result when the operation of the 

exact algorithm is restricted to one hour.  

Searching for other more useful algorithms can be pointed out as the direction 

of further work. The development of the proposed evolutionary algorithm for other 

cases is also planned, e.g., for uniform and unrelated executors. Moreover, the 

proposed evolutionary algorithm may be adapted for the usage in stochastic models 

that can better represent real-world applications. 
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