
AUTOMATYZACJA PROCESÓW DYSKRETNYCH 2018

Bartosz PIASECKI, Jerzy JÓZEFCZYK

Politechnika Wrocławska

EVOLUTIONARY ALGORITHM FOR JOINT TASK SCHEDULING

AND DEPLOYMENT OF EXECUTORS

Summary. The basis for considerations is the classical problem of task

scheduling on many identical executors with different release dates and the total

completion time as the objective function. There has been considered its

generalization considering the spatial location of both jobs and executors as well

as leading to two dependent subproblems: task scheduling and deployment

of executors. An evolutionary algorithm has been proposed. Its evaluation via

numerical experiments is provided including the comparison with the

performance of the CPLEX CP Optimizer solver.

ALGORYTM EWOLUCYJNY DLA ŁĄCZNEGO PROBLEMU

SZEREGOWANIA ZADAŃ I ROZMIESZCZENIA REALIZATORÓW

Streszczenie. Podstawą rozważań jest klasyczne zagadnienie szeregowania

zadań na wielu identycznych realizatorach z różnymi momentami gotowości

i kryterium w postaci sumy terminów zakończenia zadań. Rozpatrzono jego

uogólnienie, polegające na uwzględnieniu przestrzennej lokalizacji zarówno

zadań jak i realizatorów i prowadzące do dwóch zależnych podproblemów:

szeregowania zadań i rozmieszczenia realizatorów. Zaproponowano ewolucyjny

algorytm rozwiązania i eksperymentalnie oceniono jego jakość poprzez

porównanie z działaniem solvera CPLEX CP Optimizer.

1. Introduction

Nowadays, the task scheduling, as well as the facility location called in this work

also the deployment of executors (machines) are widely known optimal

decision-making problems which are crucial elements in strategic planning for logistic

systems, e.g. [1,5,12]. They play a significant role in production and manufacturing

systems as well as in information processing environments. A sequential solving

of both problems is the most common approach when the deployment of executors

is followed by the task scheduling. Then, locations of executors as solutions

of a facility location problem with a distance-based criterion are data for the classical

task scheduling. However, a simple analysis shows that the optimal solution of the

joint problem, when the task scheduling criterion is only taken into account, may not

be composed of optimal results of mentioned individual issues.

170 B. Piasecki, J. Józefczyk

Such a generally outlined joint problem of task scheduling and deployment

of executors referred to as ScheLoc (Scheduling and Location) has been firstly

presented in [7]. It can also be defined as a particular case of task scheduling problems

with different release dates, the value of which depends on the location of the executor

(a single executor has been only taken into account). The approach with discrete

executor positions presented in [7] is based on the graph model, the vertices of which

represent the job storage locations. The algorithm of the polynomial complexity

developed there used the ERD (Earliest Release Date) rule and was limited to the case

with the makespan as the objective function. In [3] and [4] a polynomial algorithm for

solving the ScheLoc problem in continuous space to minimize the makespan was

proposed. Its authors also used the ERD rule as the solution algorithm. A geometric

method based on the branch and bound technique can be found in [15]. A solution

similar to this one is presented in [10]. It is based on the BTST (Big Triangle Small

Triangle) algorithm [2] and allows obtaining results for cases of the joint task

scheduling and deployment of executors with the makespan or the total completion

time as the criterion. The case studies with many identical executors were carried out

by the authors of [14]. The proposed mathematical model allows finding a solution

in both continuous and discrete space for the makespan as the criterion. The unloading

of ships by cranes can be mentioned as an example of real-world applications. Ships

waiting for the unloading at sea can be treated as jobs. Locations at an embankment for

cranes as executors need the determination as well as the order of service of ships after

their reaching the embankment.

In this paper, the new version of ScheLoc is considered with many executors and

the sum of completion times as the criterion. It directly refers to [14] and [10]. The

differences consist in the criterion and the number of executors. The makespan and

a single executor as the only differences to our problem are assumed in [14] and [10],

respectively. Moreover in this paper, an evolutionary algorithm is presented that

allows solving the considered joint problem.

The reminder of the paper is organized as follows. The next section provides the

mathematical model of the considered joint optimization problem. Then in Sections

3 and 4, the description of the heuristic evolutionary algorithm and its evaluation via

series of numerical experiments are respectively given. Final remarks complete the

paper. This work comprises selected results widely presented in the master thesis [12].

2. Problem formulation

Let us specify a set of 𝑛 jobs 𝐽 = {𝐽1, 𝐽2, … , 𝐽𝑗 , … , 𝐽𝑛}. Each job has

to be performed without preemptions by a single executor (machine) taken from a set

𝑀 = {𝑀1, 𝑀2, … , 𝑀𝑖 , … , 𝑀𝑚} of 𝑚 identical executors (machines). It is assumed that

each job 𝐽𝑗 has a fixed location 𝑎𝑗 = [𝑎𝑗
(1)

, 𝑎𝑗
(2)

] ∈ ℝ2 and is characterized by the

processing time 𝑝𝑗 > 0, the ready time 𝜎𝑗 ≥ 0, and the travel speed 𝑣𝑗 > 0, i.e. the rate

of the position change expressed as a distance per unit time. For the executors, their

locations 𝑥𝑖 = [𝑥𝑖
(1)

, 𝑥𝑖
(2)

] ∈ ℝ2, 𝑖 ∈ {1, 2, … , 𝑚} have to be determined. It is assumed

that all executors have to be located within the defined area 𝑆 = {𝑥 = [𝑥(1), 𝑥(2)] ∈

ℝ2 | 𝑥𝑚𝑖𝑛
(1)

≤ 𝑥(1) ≤ 𝑥𝑚𝑎𝑥
(1)

 ∧ 𝑥𝑚𝑖𝑛
(2)

≤ 𝑥(2) ≤ 𝑥𝑚𝑎𝑥
(2)

}, 𝑥𝑚𝑖𝑛
(1)

, 𝑥𝑚𝑎𝑥
(1)

, 𝑥𝑚𝑖𝑛
(2)

, 𝑥𝑚𝑎𝑥
(2)

∈ ℝ.

Algorytm ewolucyjny dla łącznego problemu … 171

Assuming that 𝑑(𝑎𝑗 , 𝑥𝑖) = √(𝑎𝑗
(1)

− 𝑥𝑖
(1)

)
2

+ (𝑎𝑗
(2)

− 𝑥𝑖
(2)

)
2

 is the distance

between the location of 𝑗th job and the position of 𝑖th executor, the variable release

dates can be calculated as follows

𝑟𝑗(𝑥𝑖) = 𝜎𝑗 +
1

𝑣𝑗

𝑑(𝑎𝑗 , 𝑥𝑖), ∀𝑖 ∈ {1, 2, … , 𝑚}, ∀𝑗 ∈ {1, 2, … , 𝑛}. (1)

The sequence of jobs to be performed on the 𝑖th executor can be defined by the

permutation 𝜋𝑖 = (𝜋𝑖
(1)

, 𝜋𝑖
(2)

, … , 𝜋𝑖

(𝑙𝑖)
) where ∑ 𝑙𝑖

𝑚
𝑖=1 = 𝑛, and 0 ≤ 𝑙𝑖 ≤ 𝑛 denotes the

number of jobs performed by this executor. The entry 𝜋𝑖
(𝑘)

= 𝑗 means that the job

𝐽𝑗 is performed by executor 𝑀𝑖 as the 𝑘th. Two sets 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑚} and Π =
{𝜋1, 𝜋2, … , 𝜋𝑚} are decision variables. The completion times for all jobs can

be calculated using the following recursive formula

𝐶
𝜋𝑖

(1)(𝑥𝑖) = 𝑟
𝜋𝑖

(1)(𝑥𝑖) + 𝑝
𝜋𝑖

(1) , ∀𝑖 ∈ {1, 2, … , 𝑚}, (2)

𝐶
𝜋𝑖

(𝑘)(𝑥𝑖) = max {𝐶
𝜋𝑖

(𝑘−1)(𝑥𝑖), 𝑟
𝜋𝑖

(𝑘)(𝑥𝑖)} + 𝑝
𝜋𝑖

(𝑘) , 𝑖 = 1, 𝑚̅̅ ̅̅ ̅̅ , 𝑘 = 2, 𝑛̅̅ ̅̅ ̅. (3)

The total completion time ∑ 𝐶𝑗 has been chosen as the objective function 𝑓(𝑋, Π)

which evaluates decisions 𝑋 and Π. It can be expressed as follows

𝑓(𝑋, Π) = ∑ ∑ 𝐶
𝜋𝑖

(𝑘)(𝑥𝑖)

𝑙𝑖

𝑘=1

𝑚

𝑖=1

. (4)

Hence, the described optimization problem in Graham’s triplet notation [6] can

be written as 𝑃𝑚 | 𝑟𝑗(𝑥) | ∑ 𝐶𝑗.

Let us denote as 𝐷𝑃 all data of the problem, i.e., set of jobs 𝐽, set of executors

𝑀, job locations 𝑎𝑗, processing times 𝑝𝑗, ready times 𝜎𝑗, travel speeds 𝑣𝑗, and area

𝑆 for the deployment of executors. Then, the considered optimization problem deals

for given 𝐷𝑃 with finding such a pair (𝑋∗, Π∗) which minimize (4), i.e., 𝑓∗ ≜
𝑓(𝑋∗, Π∗) = min(𝑋,Π) 𝑓(𝑋, Π).

Proposition. 𝑃𝑚 | 𝑟𝑗(𝑥) | ∑ 𝐶𝑗 is strongly NP-hard optimization problem.

Proof. The NP complexity in a strong sense results immediately from such property

for both sub-problems. Namely, 𝑃𝑚 | 𝑟𝑗 | ∑ 𝐶𝑗 and the multifacility location problem

are strongly NP-hard, as it is reported in [13] and [5], respectively. □

The 𝑃𝑚 | 𝑟𝑗(𝑥) | ∑ 𝐶𝑗 problem can also be described using mixed-integer linear

programming model based on the mathematical model included in the paper [11].

Then, binary optimization variables are defined, which are elements of the three-

dimensional decision matrix 𝑊 = [𝑤𝑗𝑖𝑘]
𝑗=1,2,…,𝑛;𝑖=1,2,…,𝑚;𝑘=1,2,…,𝑛

, where 𝑤𝑗𝑖𝑘 = 1,

if the 𝑗th job is scheduled on the 𝑖th executor as the 𝑘th and 𝑤𝑗𝑖𝑘 = 0 otherwise.

Therefore, each executor has 𝑛 virtual positions on which jobs can be performed.

In addition, there is also defined the vector of continuous variables

𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑚]𝑇, whose elements represent the positions of each executor and the

172 B. Piasecki, J. Józefczyk

matrix of variables 𝐶 = [𝐶𝑖𝑘]𝑖=1,2,…,𝑚;𝑘=1,2,…,𝑛, where the element 𝐶𝑖𝑘 is the completion

time of a job which is performed by the 𝑖th executor as the 𝑘th.

The objective function in this case is expressed as

𝑓(𝐶) = ∑ ∑ 𝐶𝑖𝑘

𝑛

𝑘=1

𝑚

𝑖=1

, (5)

and the following constraints are imposed on decision variables

∑ ∑ 𝑤𝑗𝑖𝑘

𝑛

𝑘=1

𝑚

𝑖=1

= 1, ∀𝑗 ∈ {1, 2, … , 𝑛}, (6)

∑ 𝑤𝑗𝑖𝑘

𝑛

𝑗=1

≤ 1, ∀𝑖 ∈ {1,2, … , 𝑚}, ∀𝑘 ∈ {1, 2, … , 𝑛}, (7)

𝐶𝑖𝑘 ≥ ∑(𝑟𝑗(𝑥𝑖) + 𝑝𝑗)𝑤𝑗𝑖𝑘

𝑛

𝑗=1

, ∀𝑖 ∈ {1,2, … , 𝑚}, ∀𝑘 ∈ {1, 2, … , 𝑛}, (8)

𝐶𝑖𝑘 ≥ 𝐶𝑖(𝑘−1) + ∑ 𝑝𝑗𝑤𝑗𝑖𝑘

𝑛

𝑗=1

, ∀𝑖 ∈ {1, 2, … , 𝑚}, ∀𝑘 ∈ {2, 3, … , 𝑛}, (9)

𝐶𝑖𝑘 ≥ 0, ∀𝑖 ∈ {1, 2, … , 𝑚}, ∀𝑘 ∈ {1, 2, … , 𝑛}, (10)

𝑥𝑖 ∈ 𝑆, ∀𝑖 ∈ {1, 2, … , 𝑚}, (11)

𝑤𝑗𝑖𝑘 ∈ {0, 1}, ∀𝑖 ∈ {1, 2, … , 𝑚}, ∀𝑗, 𝑘 ∈ {1, 2, … , 𝑛}. (12)

Constraints (6) and (7) ensure that each job is performed on exactly one position

of exactly one executor and a maximum of one job can be performed on each position

of each executor, respectively. Moreover, in a feasible solution, the 𝑘th in order job

on the 𝑖th executor cannot start before its release date or the completion time of a job

which is scheduled on the 𝑘 − 1 position of the same executor. This condition is met

by constraints (8) and (9). Finally, constraints (10), (11) and (12) define the domains

of all decision variables.

Hence, the joint task scheduling and deployment of executor deals for given

𝐷𝑃 with finding such a vector 𝑋 and matrix 𝑊, which satisfy constraints (6)–(12),

to minimize (5).

3. Evolutionary algorithm

Such high computational complexity of the considered problem justifies the

searching of heuristic methods that allow receiving solutions in an acceptable time.

Consequently, the evolutionary approach has been employed for the elaboration of the

heuristic solution algorithm.

The representation of the problem in the developed evolutionary algorithm

consists of two parts. The first one is the genotype stored as a sequence 𝐺 =

(𝑔1, 𝑔2, … , 𝑔2𝑛, 𝑔2𝑛+1, … , 𝑔2(𝑛+𝑚)), 𝑔𝑘 ∈ [0, 1], 𝑘 ∈ {1, 2, … ,2𝑛, 2𝑛 + 1, … , 2(𝑛 +

Algorytm ewolucyjny dla łącznego problemu … 173

𝑚)}. Each two elements 𝑔2𝑗−1 and 𝑔2𝑗, 𝑗 ∈ {1, 2, … , 𝑛} represent the jobs, and they are

respectively the priority of processing this job and the number of assigned executor.

The pairs of elements 𝑔2(𝑛+𝑖)−1 and 𝑔2(𝑛+𝑖), 𝑖 ∈ {1, 2, … , 𝑚} express the values

of coordinates of the 𝑖th executor’s location after the normalization to the interval
[0, 1].

Due to the fact that the case of ScheLoc problem with a single executor does not

require the assignment of executors to jobs, the genotype is then reduced to sequence

𝐺 = (𝑔1, 𝑔2, … , 𝑔𝑛+2). Hence, the elements from 𝑔1 to 𝑔𝑛 denote the priorities

of corresponding jobs, and 𝑔𝑛+1 and 𝑔𝑛+2 are the values of the first and the second

coordinate of the executor’s location after the normalization to the interval [0, 1].
The second part of the problem representation is the phenotype that is the pair

(𝑋, Π) consisting of the set of points 𝑋 at a plane, in which executors are located, and

sequences Π indicating the order of performing the jobs by executors.

Transformation of the genotype into a phenotype consists of two stages. First

of all, the first 2𝑛 elements from the genotype have to be split into pairs of elements

(𝑔2𝑗−1, 𝑔2𝑗), 𝑗 ∈ {1, 2, … , 𝑛}. Next, they are divided into 𝑚 sequences based on the

value of the second component of each pair. If the inequality 𝑔2𝑗 ≤
𝑖

𝑚
, ∀𝑖 ∈

{1, 2, … , 𝑚}, ∀𝑗 ∈ {1, 2, … , 𝑛} is satisfied, the 𝑖th executor is assigned to the 𝑗th job.

Next, the elements of each sequence are sorted in the non-increasing order based

on the value of element 𝑔2𝑗−1, 𝑗 ∈ {1, 2, … , 𝑛}. For the case with one executor, the

assignment phase is omitted, and the order of jobs is determined according to the

non-increasing order of the corresponding values of the genotype.

The second stage of the transformation is related to the conversion of the values

of the next 2𝑚 elements of the genotype to the actual coordinates of the location of all

executors. This is done using the following expressions

𝑥𝑖
(1)

= 𝑔2(𝑛+𝑖)−1 ∗ (𝑥𝑚𝑎𝑥
(1)

− 𝑥𝑚𝑖𝑛
(1)

) + 𝑥𝑚𝑖𝑛
(1)

, ∀𝑖 ∈ {1, 2, … , 𝑚}, (13)

𝑥𝑖
(2)

= 𝑔2(𝑛+𝑖) ∗ (𝑥𝑚𝑎𝑥
(2)

− 𝑥𝑚𝑖𝑛
(2)

) + 𝑥𝑚𝑖𝑛
(2)

, ∀𝑖 ∈ {1, 2, … , 𝑚}. (14)

The initialization of the evolutionary algorithm consists in the random generation

of 𝑁𝑃𝑜𝑝 > 0 solutions in the form of the genotype. Their features are encoded as real

numbers obtained from continuous uniform distribution 𝑈(0, 1). The selection method

is based on the tournament operator of 𝑁𝑇𝑢𝑟 > 1 individuals. The definition of the

crossover operator uses the BLX-𝛼 (Blend Crossover) method which was described

in [8]. It involves the generation of two offspring individuals based on parental

solutions through drawing values from the continuous uniform distributions which

ranges for 𝛼 ∈ ℝ+ are determined in the following way

[𝑔𝑘
𝑚𝑖𝑛 − 𝛼Δ𝑔𝑘, 𝑔𝑘

𝑚𝑎𝑥 + 𝛼Δ𝑔𝑘], ∀𝑘 ∈ {1, 2, … , |𝐺|}, (15)

Δ𝑔𝑘 = 𝑔𝑘
𝑚𝑎𝑥 − 𝑔𝑘

𝑚𝑖𝑛, ∀𝑘 ∈ {1, 2, … , |𝐺|}, (16)

𝑔𝑘
𝑚𝑖𝑛 = min{𝑔𝑘

(1)
, 𝑔𝑘

(2)
} , ∀𝑘 ∈ {1, 2, … , |𝐺|}, (17)

𝑔𝑘
𝑚𝑎𝑥 = max{𝑔𝑘

(1)
, 𝑔𝑘

(2)
} , ∀𝑘 ∈ {1, 2, … , |𝐺|}. (18)

If the obtained boundary values go beyond the domain of genotype elements, they are

appropriately equated to 0 or 1. The entire procedure is performed after fulfilling the

174 B. Piasecki, J. Józefczyk

crossover probability 𝜇𝑐 ∈ [0, 1] condition. The mutation of the solution consists

in iterating all elements of the genotype and drawing a new value from the continuous

uniform distribution 𝑈(0, 1) only after the mutation probability 𝜇𝑚 ∈ [0, 1] condition

is fulfilled. The evolutionary algorithm stops after elapsing 𝑁𝐺𝑒𝑛 > 0 generations

or when the maximum number of generations without improving the best-obtained

result 𝑁𝑐𝑜𝑛𝑠𝑡 is exceeded. The latter value is computed by the following formula

𝑁𝑐𝑜𝑛𝑠𝑡 = ⌈𝑢𝑐𝑜𝑛𝑠𝑡 ∗ 𝑁𝐺𝑒𝑛⌉, (19)

where 𝑢𝑐𝑜𝑛𝑠𝑡 ∈ [0, 1] is an additional percentage parameter of the algorithm.

Assuming that the parameters of the evolutionary algorithm are fixed, it has

a computational complexity equals to 𝑂(𝑛𝑙𝑜𝑔𝑛 + 𝑛𝑚). It is also simplified to the

linear-log time complexity 𝑂(𝑛𝑙𝑜𝑔𝑛) when solving a problem with a single executor.

The operation of the entire developed algorithm is shown as the following pseudocode.

Algorithm 1 (evolutionary algorithm)

Require: 𝑁𝐺𝑒𝑛, 𝑁𝑃𝑜𝑝, 𝑁𝑇𝑢𝑟, 𝛼, 𝜇𝑐, 𝜇𝑚, 𝑢𝑐𝑜𝑛𝑠𝑡, 𝑛, 𝑚 and data of the problem 𝐷𝑃

Ensure: 𝑓EVO, 𝑋EVO, ΠEVO

1: Let 𝑁𝑐𝑜𝑛𝑠𝑡 be equal to the ceiling value of 𝑁𝐺𝑒𝑛 multiplied by 𝑢𝑐𝑜𝑛𝑠𝑡.

2: Set 𝑘𝐺𝑒𝑛 ← 0.

3: Set 𝑘𝑐𝑜𝑛𝑠𝑡 ← 0.
4: Set 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒(𝑁𝑃𝑜𝑝, 𝑛, 𝑚).

5: Set (𝑋EVO, ΠEVO) ← 𝐺𝑒𝑡𝐵𝑒𝑠𝑡𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒(𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝐷𝑃)

6: Set 𝑓𝐸𝑉𝑂 ← 𝑓(𝑋𝐸𝑉𝑂 , Π𝐸𝑉𝑂).

7: while 𝑘𝐺𝑒𝑛 < 𝑁𝐺𝑒𝑛 and 𝑘𝑐𝑜𝑛𝑠𝑡 < 𝑁𝐶𝑜𝑛𝑠𝑡 do:

8: set 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ← 𝐶𝑟𝑒𝑎𝑡𝑒𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑁𝑃𝑜𝑝, 𝑁𝑇𝑢𝑟 , 𝛼, 𝜇𝑐, 𝜇𝑚),

9: set (𝑋, Π) ← 𝐺𝑒𝑡𝐵𝑒𝑠𝑡𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒(𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝐷𝑃),

10: if 𝑓(𝑋, Π) < 𝑓(𝑋EVO, ΠEVO) then:

11: set (𝑋EVO, ΠEVO) ← (𝑋, Π),

12: set 𝑓𝐸𝑉𝑂 ← 𝑓(𝑋, Π),

13: set 𝑘𝑐𝑜𝑛𝑠𝑡 ← 0,

14: else
15: set 𝑘𝑐𝑜𝑛𝑠𝑡 ← 𝑘𝑐𝑜𝑛𝑠𝑡 + 1,

16: end if

17: 𝑘𝐺𝑒𝑛 ← 𝑘𝐺𝑒𝑛 + 1,

18: end while

4. Experimental evaluation

The goal of the performed numerical experiments was to assess the quality of the

obtained solutions and the algorithm’s computational time for different values

of selected problem’s parameters. In particular, the comparison with corresponding

results generated by the CPLEX CP Optimizer solver ([9]) has been performed. All

required calculations were carried out on the computer with the 2,4GHz i7-3630QM

processor equipped with 8GB of RAM. Values of the objective function 𝑓 and the

time of operation 𝑡 as evaluations of both algorithms were collected. They were then

averaged out of 500 repetitions for the evolutionary algorithm. The work of the solver

Algorytm ewolucyjny dla łącznego problemu … 175

was interrupted after 1 hour. Additionally, the values of 𝑁𝐺𝑒𝑛, 𝑁𝑃𝑜𝑝, 𝑁𝑇𝑢𝑟, 𝛼, 𝜇𝑐, 𝜇𝑚

and 𝑢𝑐𝑜𝑛𝑠𝑡 parameters of the evolutionary algorithm were tuned for each data set

according to the function that had been prepared earlier and described in [12]. During

the comparative study, the relative percentage difference between the solutions

obtained by the solver and the evolutionary algorithm was calculated using the

following performance index 𝛿 = (𝑓EVO − 𝑓CP)/𝑓CP ⋅ 100% where 𝑓CP and 𝑓EVO are

the values of the objective function obtained by the used solver and the evolutionary

algorithm, respectively. The dependence of 𝛿 and 𝑡 on 𝑛 and 𝑚 has been verified

during the experiment.

The research was carried out on randomly generated data sets according to the

continuous uniform distribution. By default, 𝑛 = 100 and 𝑚 = 2 were assumed. The

storage locations 𝑎𝑗 of jobs were generated in the grid layout on the plane [0, 1000] ×
[0, 1000], the processing times 𝑝𝑗 were selected from the interval [1, 51] and the

storage arrival times were set to 𝜎𝑗 = 0 for all jobs. The travel speeds 𝑣𝑗 were

calculated using the parameter 𝛾 = 1, which denotes the coefficient of approximation

of travel and performing times for each job. This was done by the following

expression

𝑣𝑗 =
1

𝛾𝑝𝑗

𝑑 (𝑎𝑗 , 𝑐(𝑆)) , ∀𝑗 ∈ {1, 2, … , 𝑛} (20)

where 𝑐(𝑆) is the central point of the executors deploying area 𝑆 which was also set

as constant and equals 𝑆 = {[𝑥(1), 𝑥(2)] | 𝑥(1) ∈ [347.16, 637.91] ∧ 𝑥(2) ∈

[207.23, 553.74]}. The results are presented in Tables 1 and 2. They show that the

evolutionary algorithm works relatively repetitively in terms of the received objective

function values. This is confirmed by the obtained values of standard deviations which

are on average at the level of 1 − 2% of the average values of the criterion.

Comparing the quality of the proposed algorithm in relation to the CPLEX

CP Optimizer solver, it can be noticed that for 𝑛 ≥ 20 it obtained on average better

solutions than the solver, and these differences are rapidly growing in favor of the

evolutionary algorithm as the number of jobs increases. Also, the solver

is characterized by a very fast increase in the computational time, which for 𝑛 ≥ 12

met a time limitation on the used platform, so that it was not able to return the optimal

solutions. Whereas, the evolutionary algorithm, even for 𝑛 = 100, can cope with this

problem in about 8 seconds.

Table 1

Dependence of 𝑓, 𝑡, and 𝛿 on 𝑛

𝑛
𝑓𝐸𝑉𝑂 𝑡𝐸𝑉𝑂[𝑠]

𝑓𝐶𝑃 𝑡𝐶𝑃[𝑠] 𝛿
AVG STD AVG STD

6 329.95 7.20 1.16 0.33 325.79 94.22 1,28%

8 455.04 22.00 1.34 0.40 434.53 29.64 4,72%

10 565.95 9.08 1.48 0.42 539.41 565.38 4,92%

12 740.33 11.87 1.60 0.52 721.65 3600.03 2,59%

14 960.82 15.22 1.77 0.60 936.07 3600.03 2,64%

16 1162.42 16.20 2.00 0.62 1133.88 3600.05 2,52%

176 B. Piasecki, J. Józefczyk

18 1515.56 16.67 2.16 0.75 1489.09 3600.05 1,78%

20 1998.51 19.34 2.39 0.79 2013.26 3600.06 -0,73%

40 6278.21 27.87 4.61 1.45 6409.91 3600.20 -2,05%

60 14820.04 47.19 6.77 1.63 15195.42 3600.47 -2,47%

80 26251.32 67.27 6.86 1.61 33288.86 3600.87 -21,14%

100 42620.07 116.20 7.89 1.91 66831.53 3601.25 -36,23%

Table 2

Dependence of 𝑓 and 𝑡 on 𝑚 for the evolutionary algorithm

𝑚
𝑓𝐸𝑉𝑂 𝑡𝐸𝑉𝑂[𝑠]

AVG STD AVG STD
1 104228.59 40.73 7.05 0.60

2 53254.13 120.57 7.97 1.82

3 36414.41 169.97 7.23 1.68

5 23072.40 197.21 6.83 1.69

8 15695.99 201.88 6.35 1.60

10 13286.60 195.27 6.31 1.65

15 10115.38 174.48 6.28 1.60

20 8602.81 171.58 6.31 1.65

25 7738.44 152.36 6.38 1.71

30 7172.22 144.59 6.58 1.75

40 6514.16 129.64 6.97 1.96

50 6133.97 109.85 7.56 1.94

As the conclusions of the experiments, it is worth noting that growing the

number of jobs 𝑛 increases values of both the criterion and the computational time.

The employment of more number of executors results in decreasing the value

of criterion which is initially rapid, but it slows down for 𝑚 ≥ 15. However, this

is connected with increased computational times.

5. Final remarks

This paper investigates the joint problem of task scheduling and deployment

of many identical executors in a two-dimensional continuous space. There was

proposed the evolutionary algorithm allowing for solving this computationally difficult

problem. As a result of the experimental evaluation, it was shown that the developed

evolutionary algorithm is only slightly worse than the exact algorithm represented

by the solver. Additionally, it can give even better result when the operation of the

exact algorithm is restricted to one hour.

Searching for other more useful algorithms can be pointed out as the direction

of further work. The development of the proposed evolutionary algorithm for other

cases is also planned, e.g., for uniform and unrelated executors. Moreover, the

proposed evolutionary algorithm may be adapted for the usage in stochastic models

that can better represent real-world applications.

Algorytm ewolucyjny dla łącznego problemu … 177

REFERENCES

1. Drezner Z. (Ed.): Facility Location. A survey of Applications and Methods.

Springer-Verlag New-York, 1995.

2. Drezner Z., Suzuki A.: The Big Triangle Small Triangle Method for the Solution

of Nonconvex Facility Location Problems. Operations Res., 52(1), 2004, p. 128-

135.

3. Elvikis D., Hamacher H. W., Kalsch M. T.: Scheduling and Location (ScheLoc):

Makespan Problem with Variable Release Dates. Univ. of Kaiserslautern, 2007.

4. Elvikis D., Hamacher H. W., Kalsch M. T.: Simultaneous scheduling and location

(ScheLoc): The planar ScheLoc makespan problem. Journal of Scheduling, 12

(4), 2009, p. 361- 374.

5. Farahani R. Z., Hekmatfar M.: Facility Location: Concepts, Models, Algorithms

and Case Studies, Heidelberg, Physica, 2009.

6. Graham R. L., Lawler E. L., Lenstra J. K., Rinnooy Kan A. H. G.: Optimization

and Approximation in Deterministic Sequencing and Scheduling: a Survey.

Annals of Discrete Mathematics, Elsevier, 5, 1979, p. 287-326.

7. Hennes H., Hamacher H. W.: Integrated Scheduling and Location Models: Single

Machine Makespan Problems. Report in Wirtschaftsmathematik, 82, 2002.

8. Herrera F., Lozano M., Sánchez A. M.: A taxonomy for the crossover operator for

real-coded genetic algorithms: An experimental study. International Journal of

Intelligent Systems, 18 (3), 2003, p. 309-338.

9. IBM: CPLEX CP Optimizer. https://www.ibm.com/analytics/data-

science/prescriptive-analytics/cplex-cp-optimizer (available at 17.03.2018).

10. Kalsch M. T., Drezner Z.: Solving scheduling and location problem in the plane

simultaneously. Computers & Operations Res., Elsevier, 37(2), 2010, p. 256-264.

11. Kooli A., Serairi M.: A mixed integer programming approach for the single

machine problem with unequal release dates. Computers & Operations Res.,

Elsevier, 51, 2014, p. 323-330.

12. Piasecki B.: Application of AI-based algorithms for joint problem of task

scheduling and deployment of executors (in Polish). Master Thesis. Wroclaw

University of Science and Technology, Wrocław 2018.

13. Pinedo M. L.: Scheduling: Theory, Algorithms, and Systems. Springer-Verlag

New York, Nowy Jork, 2012.

14. Rajabzadeh M., Ziaee M., Bozorgi-Amiri A.: Integrated approach in solving

parallel machine scheduling and location (ScheLoc) problem. International

Journal of Industrial Engineering Computations, 7(4), 2016.

15. Scholz D.: Deterministic Global Optimization: Geometric Branch-and-bound

Methods and their Applications. Springer New York, 2012.

https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-cp-optimizer
https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-cp-optimizer

