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DISCRETE-TIME FEEDBACK STABILIZATION 

 

Summary. This paper presents an algorithm for designing dynamic compensator 

for infinite-dimensional systems with use of finite dimensional approximation. 

The proposed method was then implemented in order to find the control function 

for thin rod heating process. The optimal sampling time was found depending on 

discrete output measurements.  

 
DYSKRETNE STABILIZUJĄCE SPRZĘŻENIE ZWROTNE 

 

Streszczenie. Artykuł prezentuje algorytm projektowania kompensatora 

dynamicznego dla układów nieskończenie wymiarowych wykorzystując 

skończenie wymiarową aproksymację. Następnie, zaproponowany algorytm 

został zaimplementowany do sterowania procesem nagrzewania pręta oraz 

doboru optymalnego kroku dyskretyzacji kompensatora przy założeniu 

dyskretnego pomiaru na wyjściu. 

 

1. Introduction  
 

One of the main areas of automatic control is connected with stabilization 

problems. Usually, in real time application, an algorithm consisting of two stages is 

used: 1. Bring the system to the valid region of linearization. 2. Stabilize the system 

using linear approximation. This approach is justified by topological similarity of 

nonlinear system and its linearization (valid only for hyperbolic systems without 

purely imaginary eigenvalues). 

Feedback design (design of the stabilizing controller) depends on the system’s 

form (usually we have either differential equations or transfer function for time 

independent systems). 

The design of finite dimensional feedback is useful due to multiple reasons: 1. It 

is possible to use simple, finite-dimensional methods, e.g., Lyapunov functions and in 

consequence, Lyapunov equations strictly linked with algebraic Riccati equations. 2. 

Some of the systems have predefined structure, e.g., the hoisting machine (long line is 

a distributed system, and the drive may be modeled with finite-dimensional system). 

The design of finite-dimensional controllers for infinite systems with finite set of 

unstable modes (or at least weakly damped ones) is widely analyzed in literature. This 

class of the systems was described by Triggiani (1975), or even earlier by Fattorini 

(1967). Using small disturbance methods and building appropriate invariant sets, 
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Schumacher (1981, 1983) proposed finite dimensional stabilizing controllers for 

distributed and delayed systems. Similar results were obtained by Curtain (1984) for 

parabolic systems with infinite input-output operators. Also the works of Curtain and 

Salomon (1986), and Sakawa (1983, 1984, 1985) are worth noticing. Balas (1983) 

proposed a finite dimensional dynamic compensator for finite dimensional 

approximations of infinite systems. Similar methods were proposed by Kobayashi 

(1983). Gibson (1981) used finite dimensional approximation of algebraic Riccati 

equation. The detailed description of those works was done, e.g., by Mitkowski (1991) 

with 229 books and articles analyzed.  

The design of stabilizing controllers is still an interesting problem (see, e.g. 

Przyluski (2014)), especially as there are more efficient numerical tools. Thanks to 

computers, nowadays, we can analyze complex mathematical models, e.g. of non-

integer order  Podlubny (1999), Das (2008), Caponetto (2010), Kaczorek (2011), 

Skruch (2013), Obrączka (2014) which sometimes better describe the real system. 

In this work, we focused on an algorithm of stabilization of linear infinite 

dimensional system with finite set of instable modes (weakly damped) using finite 

discrete stabilization. As an example, we used diffusion equation which models the 

heating process of a thin rod. 

 

2. Problem description 

 

A simplified model of feedback system S (with continuous time) is depicted in 

the figure 1. 
 

     )(tu                                               )(ty  

                          SYSTEM 

 

 

 

                   CONTROLLER 

 
 

Fig. 1. Closed-loop system 

 

Finite dimensional stabilization problem: for a given infinite system S find a 

stabilizing controller (finite dimensional) such that the closed-loop system is 

exponentially stable with predefined damping coefficient. 

In digital control, it is necessary to use a discrete system (computer or other 

device with discrete time). In order to use a discrete stabilizing controller in 

continuous time system, we need to use the system (see fig 2.) in form of a series of 

pulser, continuous system S, and ZOH with input u(k) and output y(k), k=1,2,3,… 
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Fig. 2. Continuous-discrete system 

 

If the pulser and ZOH work synchronously with time step h>0, then the 

parameters of discrete system S
d
 denoted for simplicity with A, B, C are given by the 

formulas calculated on the basis of continuous system: 

 

h
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For a valid controller (both continuous and discrete), we need the controllability 

and observability of continuous system S. The conditions for time step h>0 which 

guarantee that the discrete system is also controllable and observable are known and 

may be found, e.g., in Mitkowski (1991, p. 141).  

 

3. The decomposition of the system 

 

There is a group of infinite dimensional systems which can be stabilized with use 

of finite dimensional methods. Let us now consider a system 

YtyUtuXtx

tCxtytButAxtx





)(,)(,)(

)()(),()()(
.                                            (2) 

For further use we will denote it as S(A,B,C). Let us now assume that (2) fulfills the 

following conditions: 

 X,Y,U- Hilbert spaces, .dim,dim  YU  

 A is an infinitesimal generator C0 of semi-group TA(t), for 0t  in X 

 ),( XULB , ),( YXLC  are bounded 

 A is a discrete operator with finite number of eigenvalues with Re s , 

  

Taking into account the conditions above, we can decompose (2) into (Triggiani 

1975):  
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The spectrum of (2) is depicted in the figure 3. The operator A1 is responsible for 

unstable (or weakly damped) part of the system. The operators A1 and A2 are 

exponentially stable. 

 
               3A                         2A                       1A

                      *                         *            *

     *         *                         *               *              *           *

                      *                         *            *

                                                           
0

 

Fig. 3. Discrete spectrum of (2) 

 

Let us now add the following assumptions 

 0)(:sup{Re
3
 Ass  , 0)}(:sup{Re

2
  Ass  

 The pair (A1,B1) is controllable, The pair (C1,A1) is observable  

 0 dim
32
 BpX  and     C .0

3
  

The last assumption is fulfilled if, e.g., self-adjoint generator has compact resolvent 

(the eigenvectors form a basis of the given space). 

 

4. Finite-dimensional stabilizing controller 

 

Let us now consider dynamic feedback Mitkowski [1991, s. 233] of form: 

.2,1,)(),(
11

)(

),(
0
1

)(
2

)(
1

212

2111111
)(

2

)(
1



































 














i
i

Xt
i

wtwKtu

ty
G

tw

tw

AKB

CGKBCGA

tw

tw




                         (5) 

Let us assume that the conditions mentioned in previous section are fulfilled. 

There exists a finite dimensional stabilizing controller (5), such that the closed-loop 

system (2) with (5) is exponentially stable with predefined damping coefficient 

).0,(  See (Sakawa 1983 [29]) and Mitkowski [1982, 1986, 1988], Mitkowski 

[1991, s. 230]) for further details. 

The design of feedback (5) may be reduced to finding the matrices K1 and G1 

which can be done using methods known from finite dimensional systems’ analysis, 

e.g., LQ design. The desired damping coefficient )0,(  can be found by increasing

2
dim Xp  . 

A discrete version of the controller (Mitkowski [1991, s. 236]) can be obtained 

using formulas (1) and remembering that the system is asymptotically stable if the 

eigenvalues lie inside the unit circle (assumption 4 and 5, and fig 3). The matrices K1 i 

G1 should be found in a way that guarantees that the eigenvalues of matrices A1+B1K1 

and A1-G1C1 lie inside the unit circle (for example, we can set them as zeros). 
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5. Stabilization of finite dimensional discrete approximation of the model  

 

For design of closed-loop control system with use of simulation methods, we 

approximate the system (3) with finite dimensional approximation. We replace the 

operator A3 with matrix A3 of appropriate dimensions (depending on desired accuracy 

of approximation). This algorithm will be now illustrated with laboratory experiment 

(Oprzędkiewicz 2003).  

The continuous finite dimensional system S(A,B,C,D) with matrices A,B,C, D 

may de transformed to a discrete system S
+
(A

+
, B

+
, C

+
, D

+
). In numerical approach, 

the system S
+
 is called differential scheme of continuous system S. The design of 

stabilizing discrete controller is now equivalent to design a closed loop system with S
+
. 

The parameters of S
+
 can de described with Tustin method (Astrom 1990, Bini 2014, 

see also Mitkowski 1991, p. 142, with Newton-Cotes formula), 
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The Tustin differential scheme has the following property: the discrete system S
+
 is 

asymptotically stable if and only if the system S is asymptotically stable (the 

eigenvalues of A are in left half-plane). The inverse matrix A
-1

 in (6) exists if the 

system S is asymptotically stable (but might be weakly damped). 

 

6. Example 

 

Let us now consider the process of heating a thin rod (Oprzędkiewicz [2001, 

2003]) depicted in the figure 4. 
 

u                                                                                  y 

 

 

 

          Heater                           Temperature sensor 
 

Fig. 4. Heating of a thin rod. 

 

A simplified mathematical model of the analyzed process has the form 
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where 
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After the decomposition, we have S(A,B,C,D) where 
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We have the following parameters (6) (verified in a laboratory Oprzędkiewicz 2001):  

7922.25,0271.0,000945.0  cRa
a

, 52/27,52/25,13/1
210
 zzz . 

From (7), we have  

5.1433)-   4.7258-

   4.3261-   3.9441-    3.5800-   3.2335- 2.9049-   2.5940-   2.3009-   2.0255-

   1.7679-    1.5281-   1.3060-   1.1017-   0.9152-   0.7464-   0.5954-   0.4621-

    0.3467-   0.2490-   0.1690-   0.1068-   0.0624-   0.0358-   0.0269-  (diagA 

 

T0.0087]-

   0.0130-   0.0168-   0.0200-    0.0223-   0.0235-   0.0234-   0.0218-   0.0187-

   0.0139-   0.0077-    0.0000-   0.0090    0.0190    0.0299    0.0412    0.0526 

   0.0638     0.0745    0.0842    0.0926    0.0995    0.1046    0.1077    0.0769[B

 

0.9848]    0.0000    1.0507-   0.0000-    1.1130   0.0000-   1.1711-   0.0000-   1.2246 

   0.0000-   1.2729-    0.0000-   1.3156    0.0000-   1.3524-   0.0000-   1.3830 

   0.0000     1.4070-   0.0000-   1.4244    0.0000-   1.4348-   0         1.0171[C

 

and D=0.

 

In order to perform the simulation, the heating process was implemented with use of 

Matlab/Simulink environment (see Fig. 1). 
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Fig. 5. Simulink system 

 

The zero-order-hold is necessary to simulate a measurement device (e.g. thermometer) 

with various sampling times. We used the Tustin method (see, e.g., Astrom 1990) to 

discretize the compensator and then find the appropriate sampling frequency. It 

transforms the continuous system S(A,B,C,D) into a discrete one for a given sampling 

time h using the formulas  
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During the simulation we wanted to find optimal sampling time of the compensator for 

various sampling frequencies for temperature measurement. We used the performance 

indicator proposed by Bini [2014]:  


T

dttu
N

NJ
0

)(
1

)(          (9) 

During the simulations, we set T=200 [s]. For optimization, we used golden search 

with parabolic interpolation implemented in Matlab Optimization Toolbox. The 

optimization constraints were chosen as 6101  N . The results are gathered in  

Table 1. 

Table 1  

The results of optimization 

Temperature sampling 

frequency [Hz] 

Optimal number of samples 

optN  

Sampling time 

optN

T
h   [s] 

10  23700 0.0084 

1  23896 0.0083  

0.1  68957 0.0029  

0.03  84140 0.0024  

0.02  48284 0.0041  

0.01  69997 0.0028 

 

It can be seen that sampling time of the controller increases with increasing sampling 

frequency. This means that we have a buffer in the controller for doing necessary 
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calculations. The accuracy of temperature measurements and controller performance 

are depicted in the figures 6 and 7. 

 
Fig. 6. Temperature for various sampling frequencies 

 
Fig. 7. Control signal for various sampling frequencies 

 
7. Conclusion 

 

In this paper, we presented an algorithm of controller design using two methods: 

theoretical approach to design finite dimensional feedback (5) and stabilization method 

based on approximation (Tustin, finite dimensional) – see example (7). 
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 Nevertheless, the proposed algorithm is general and may be used for control of 

various systems. One of the possible way of applications may be non-integer order 

diffusion equation Gal and Warma [2016]. However, it will require further analysis 

and research, as the methods for integer order systems cannot be directly applied to 

them. 
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