
AUTOMATYZACJA PROCESÓW DYSKRETNYCH 2016

Maciej KORYL

Politechnika Rzeszowska

RESOURCES-BASED CONCEPT OF COMPUTATION FOR ENTERPRISE

SOFTWARE

Summary. Traditional computational models for enterprise software are still to a

great extent centralised. However, rapid growing of modern computation

techniques and frameworks causes that contemporary software becomes more

and more distributed. Towards development of new complete and coherent

solution for distributed enterprise software construction, synthesis of three well-

grounded concepts is proposed: Domain-Driven Design technique of software

engineering, REST architectural style and actor model of computation. As a

result new resources-based framework arises, which after first cases of use seems

to be useful and worthy of further research.

KONCEPCJA PRZETWARZANIA DLA OPROGRAMOWANIA

KORPORACYJNEGO BAZUJĄCA NA ZASOBACH

Streszczenie. Tradycyjne modele przetwarzania dla oprogramowania

korporacyjnego są modelami scentralizowanymi, jednak szybki wzrost

nowoczesnych technik obliczeniowych oraz dostępnych bibliotek i frame-

worków powoduje, że współczesne oprogramowanie staje się coraz bardziej

oprogramowaniem rozproszonym. Zdążając w kierunku opracowania nowego

całościowego i spójnego rozwiązania dla rozproszonych systemów

korporacyjnych, w niniejszej pracy zaproponowano syntezę trzech dobrze

ugruntowanych koncepcji: podejścia Domain-Driven Design, stylu

architektonicznego REST i modelu aktorowego. W rezultacie otrzymano

użyteczne rozwiązanie, w którym przetwarzanie rozproszone odbywa się w

oparciu o zasoby.

1. Introduction

Enterprise software systems working in deployment environment of huge

corporations such as banks or industrial plants consist of many separate products,

typically from several to several dozen parts. One software product serves from

hundreds to above thousand use cases and at the same time interacts with use cases of

other products due to automation of complex business processes. From automation

kind point of view, two types of processes may be listed:

114 M. Koryl

 processes of interactive character, often automated by usage of workflow tools,

responsible for entire process composition by using atom elements representing

well defined and cohesive activities. Process composition in such manner is

called orchestration;

 processes of batch character, consisted of processing fragments one following

another or one running parallel with another, typically iterated on collections of

business objects characteristic for particular area, such as contracts, transactions,

orders and so. Nowadays implementations of such batch processes are supported

by modern software frameworks dedicated to that purpose.

In both cases, constructed processes consist of many functions working in close

cooperation, often exposed as APIs of systems or APIs of systems’ components. As

long as cooperation is carried in synchronous way, complexity of such arrangement

may be controlled, even if number of involved systems is substantial and number of

interactions is high. In synchronous systems number of possible states in which system

may be is countable and predictable on the stage of software designing or detectable

during testing. After applying asynchronous model of communication, complexity of

system violently grows with increase of possible different states, which number is non-

linear function of possible states of constituents of the system and number of

interactions between them ([4]). During many years of computation theories

development and many years of software engineering practices implementation,

meaningful conceptual and technical tools were established, but that does not mean

that problem of complexity has passed away or even has been minimized to notable

degree. The matter is broadly recognized in specialized computation areas dealing with

well-established algorithms, but still is not enough captured in commercial products’

development, govern by its own specificity connected with high number of software

users, many different business objects and huge number of unpredictable interactions

(good characteristic of such systems is shown in [8]). In these days, problem is more

and more complicated because of limitations of monolithic systems and need for

introduction of distributed software, for example in the form of microservices ([12]),

which are adapted for horizontal scaling and well suited in actual hardware

capabilities. Several conceptual and technical tools currently used in software

engineering discipline, dedicated to distributed processing are described in [3], where

one of them is an actor model of computation, which after many years of academic

development, currently gains great popularity in commercial area.

Proposition which is shown in this paper constitutes coherent and complete

framework based on well-tried techniques and design patterns with actor model

between them and has working implementation in Java programming language with

use of modern tools for enterprise applications such as Spring Framework and noSQL

databases. Proposed solution has been used to build some parts of banking

transactional system, which supports batch processes such as massive transactions

processing or financial instruments valuation. As a foundation of the idea three

engineering concepts act: Domain-Driven Design technique proposed in [5] and

broadly accepted in software community, Representational State Transfer architectural

style introduced in [6] and currently becoming the most popular way of interaction

between web components, and the actor model of computation described in [10]

nowadays gaining mature and useful implementations. In addition, the solution was

Resources-based concept of computation for enterprise software 115

enriched by use of standard language of agent communication in multi-agent systems –

Agent Communication Language, which semantics was found as very suitable for

required interactions.

Plan for this paper is as follows: on the beginning base concepts used are shortly

described, next central idea of this paper - the emergent resources concept is

explained, after that example of interaction in real banking system supported by new

framework is shown, and finally closing remarks and plans for further work appear.

2. Fundamental concepts

Resource as a central point of the REST model. Representational State

Transfer (REST) is an architectural style implementing fundamental rules of the web

and HTTP standard. REST was introduced by dissertation [6] and at present has

obtained great popularity as “web used correctly”. Central idea of the style is to treat

all things which have identity as resources and give them globally unique Uniform

Resource Identifier (URI). Resources named in this way may communicate together

using hyperlinks. Communication is provided by usage of standard HTTP commands

with their established semantics. Important rule of REST is that communication ought

to be stateless, i.e. parties cannot keep state of communication assuming that next

message will be continuation of previous one. In proposed approach the resource term

plays key role as external representation of computation units and set of REST rules

and good practices in interactions modelling are applied.

Aggregate in Domain-Driven Design concept. Domain-Driven Design (DDD)

concept introduced in [5] is an approach to software development which pays attention

to key meaning of domain model in software design. Domain model plays central role

in whole process of development acting as universal medium of communication

between all participants and providing stable base for software structure. DDD

technique is divided into two stacks of patterns: strategic and tactical ones. First of

them serves as toolset for taking control over complexity of extensive software and

second consists of a set of building blocks, which is sufficient for complete design of

each kind of enterprise software on some level of abstraction. The most important

pattern from tactical stack is the aggregate building block and there is plenty of rules

explained in literature, how to build useful aggregates (for example [18]). Aggregate is

a graph of objects tied together into one coherent object offering common set of

services for external world. The only way to access aggregate constituents’ capabilities

is aggregate root, the central entry point to that software unit. Thanks to such

construction, aggregate guarantees the consistency of changes of whole structure,

controls its internal state and gives convenient way for its access. In proposed

framework, aggregate plays important role as representation of stable state of a

resource and also as a part of resource in dynamical state by offering its behavioural

capabilities.

Actor model of computation. The actor model of computation developed many

years ago and firstly published in [10] was thought as conceptual tool for

understanding of concurrency. Many software frameworks based on actor model have

been built to this day, but broad utilization in enterprise software area is still scarce.

Currently, attention in that idea is growing, stimulated by development of multicore

116 M. Koryl

processors and development of cloud computing solutions with necessity of

computation distribution. Theory of actor model treats actors as universal primitives

with a capability to carry out each kind of needed computation ([9]). Actors are

independent units of computation loosely coupled together, only by asynchronous

message passing and the only knowledge which actor has about other actor is its

mailbox address. When an actor receives a message it may do some computation, send

messages to participants, create additional actors as its children or may change its own

behaviour preparing itself for future course of situation. In proposed framework, actors

will support implementation of dynamical state of resource.

Agent Communication Language. Agent Communication Language (ACL) is a

definition of standard language used in multi-agent systems to model conversations

between involved parties. Its origins are in philosophical theory of speech acts ([15]),

which state that each utterance has not only informative, but also performative

function, i.e. carries with itself consequences in receiver’s activity. ACL has been

drawn up by Foundation for Intelligent Physical Agents (FIPA) as FIPA-ACL set of

standards [7]. In proposed solution ACL syntactics and semantics are used to model

communication between resources, especially by use of standard vocabulary of

performatives denoting the type of communicative acts.

3. Emergent resources model of computation

The emergent resources term. Term “emergent” is adapted from theory of

emergent properties [13], but now is applied only in very narrow meaning to denote

object which properties are in continuous change and observer cannot have knowledge

about its state, but can have only some beliefs. However, future work is planned on

broader exploration of that theory assuming its usefulness in explanation and

construction of modern software artefacts. As “emergent resources” are considered

resources, which at moment of interaction may be under change originated from other

interaction, computation processes or any other factor. As emergent resource is in

unstable state and its properties may change in time, another object cannot assume that

something is true about that resource, even if resource still exists or not. For example,

if some procedure in banking system completes payment and has information about

sufficient balance of debited account, it cannot assume that payment will be

successful. It ought to be ready for receiving information from target resource that

operation has succeeded or not.

From software design point of view, emergent resource is represented by

synthesis of three concepts:

 REST resource, which brings unambiguous global identification of resource and

convenient language of communication for presentation and change of its state. It

also provides availability of many technical frameworks ready for use for

implementation of interactions;

 DDD aggregate, which gives a comprehensive way of modelling software

external and internal structure, its behaviour and rules forming objects identity.

DDD technique also brings possibility of effective and cheap implementation

thanks to help of modern frameworks for enterprise software such as Spring

Framework [16] which was broadly used to implement proposed solution;

Resources-based concept of computation for enterprise software 117

 actor, which offers its capability of long-term existence and sophisticated

communication abilities. Utilization of actor model is possible and reliable due to

existence of mature implementations such as Akka Framework [1], which was

used with support of patterns based on it ([2, 19, 20]).

Two areas of resources. Any resource in the solution may stay in one of two

states: stable state, when no change of its properties is possible and emergent state,

when its properties may dynamically change. Therefore, symbolically two areas are

distinguished: stable resources area and emergent resource area as was presented on

Fig. 1.

Fig. 1. Two areas of resources

If message to resource in stable area was directed, resource is moved to emergent

area, where it acquires ability to act. If system detects that emergent resource is idle

(does not perform any activity and has empty mailbox), resource may be removed

from emergent area, but it depends on strategy of supervising in use. In the system

implementation these areas as represented by DDD repository pattern and by actor

system respectively. For resource migration into emergent area, dedicated to such kind

of resources, area supervisor is responsible. Sample body of supervisor’s callback

function of message handling is shown below:

public void onReceive(Object message) {

 if (message instanceof CreateResource) {
 // request to create new resource
 CreateResource msg = (CreateResource) message;

 // create emergent resource
 ActorRef emergentResource = context()
 .actorOf(componentName(),
 msg.getResourceId());

 // and send message to the newborn in emergent
 // state. It will be responsible for immediate
 // creation of its stable representation
 emergentResource.tell(msg, self());

class Two areas of resources

Emergent resources area [Actor
system]

Emergent resources area [Actor
system]

Stable resources area
[Repository]

Stable resources area
[Repository]

StableResource [Aggregate]

EmergentResource [Actor]

ResourceController

AnotherResource

load

save

REST

118 M. Koryl

 } else if (message instanceof PerformAct) {
 // message to existing resource
 PerformAct msg = (PerformAct) message;

 // is resource in emergent state?
 ActorRef emergentResource = this.getContext()
 .getChild(msg.getResourceId());

 if (emergentResource == null) { // no
 // enter existing resource into emergent state
 emergentResource = context()
 .actorOf(componentName(),
 msg.getResourceId());
 }

 // send message to resource in emergent state
 emergentResource.tell(msg, self());
 }
}

4. Sample interaction supported by the new model

Each processing routine in transactional system may be treated as emergent

resource. Examples of such resources are: standing orders processing, interest

calculation, interest capitalization, incoming or outgoing payments processing etc.

Initialization of processing is therefore implemented as request for creation of resource

of some kind. System ordering computation sends request to microservice which is

responsible for handling such processing. Typically it will be microservice which

owns resources being processed, for example customer contracts or registered

payments. It also may be separate microservice as in example below, when processing

involves different resources. Ordering system sends POST command with REQUEST

performative and in return receives URI of emergent resource which probably will be

created in the target system. Ordering system have to be ready to accept confirmation

of resource creation sent by target system – the CONFIRM performative meaning that

processing has been started. Thanks to received URI, ordering system is able to

contact with emergent resource in target system and ask it about its state

(QUERY_REF performative sent by GET command) or to order further requests, for

example hold computation or abandon it (CANCEL performative sent by POST

command). Ordering system should be ready to accept information from resource

(which may be sent as INFORM performative by POST command) or explicitly order

such information (e.g. results of computation). Sequence diagram presented on Fig. 2

illustrates example of interactions between micoservices working on some kind of

processing in banking software. For clarity only single set of interactions for one

transaction was shown.

Resources-based concept of computation for enterprise software 119

Fig. 2. Sample interaction supported by the new model

5. Closing remarks

New concept of computation in enterprise software and one example of its

application in some processing routine in transactional system were presented. Similar

solution works in real banking software and currently is under further research and

development, but first results are very promising. After a few first cases of use of new

solution, there might be told that characteristic features of development process based

upon new framework are low cost of use cases implementation and low level of

defects detected during quality assurance phase. The concept of emergent resource is

thought as a broader idea and may serve as fundamental framework able to maintain

whole transactional solution. Especially it probably may be applied to serve processes

of interactive character, which are more unpredictable than batch processes. Such

research is currently going on. Next planned stage is attempt to build complete new

module of transactional system with dominance of resources of new kind. Additional

direction of theoretical and practical development will be step towards utilization of

some more sophisticated ideas, such as emergent properties theory, speech acts theory

and indeterminism with hope, that they may help in better understanding of complex

software processes.

REFERENCES

1. Akka Framework, http://akka.io.

2. Allen J.: Effective Akka. O'Reilly Media, Inc., 2013.

3. Butcher P.: Seven Concurrency Models in Seven Weeks. Pragmatic Bookshelf,

2014.

4. Chandy K. M., Lamport L.: Distributed Snapshots: Determining Global States of

Distributed Systems. ACM Transactions on Computer Systems, Vol. 3, No. 1,

February 1985, p. 63–75.

5. Evans E.: Domain-Driven Design: Tackling Complexity in the Heart of Software.

Addison-Wesley Professional, 2003.

6. Fielding R. T.: Architectural Styles and the Design of Network-based Software

Architectures. PhD dissertation, University Of California, Irvine, 2000.

7. FIPA Standards, http://www.fipa.org/repository.

sd Sample interaction supported by new model

System operator

«microservice»

Processing

«microservice»

Payments

«microservice»

CurrentAccounts

«microservice»

Accounting

POST /processing(REQUEST)

runProcessing()

POST /payments(REQUEST) POST
/currentAccounts/003(REQUEST)

POST /accounting/005(INFORM)

POST
/currentAccounts/004(REQUEST)

POST /accounting/005(INFORM)

POST /payments/002(INFORM)

POST /processing/001(INFORM)

GET
/processing/001(QUERY_REF)

120 M. Koryl

8. Fowler M.: Patterns of Enterprise Application Architecture. Addison-Wesley

Professional, 2002.

9. Hewitt C.: Actor Model of Computation: Scalable Robust Information Systems.

Cornell University Library, arXiv:1008.1459, 2015.

10. Hewitt C., Bishop P., Steiger R.: A Universal Modular Actor Formalism for

Artificial Intelligence. IJCAI'73 Proceedings of the 3rd International Joint

Conference on Artificial Intelligence, 1973, p. 235–245.

11. Millett S., Tune N.: Patterns, Principles, and Practices of Domain-Driven Design.

John Wiley & Sons, 2015.

12. Newman S.: Building Microservices. Designing Fine-Grained Systems. O'Reilly

Media, 2015.

13. O'Connor T.: Emergent Properties. American Philosophical Quarterly, 31, 1994,

pp. 91-104.

14. Nash M., Waldron W.: Applied Akka Patterns. O'Reilly Media, Inc., 2016.

15. Searle J. R.: Speech Acts. Cambridge University Press, 1969.

16. Spring Framework, https://spring.io.

17. Sukumar G.: Distributed Systems: An Algorithmic Approach. Chapman and

Hall/CRC, 2014.

18. Vernon V.: Implementing Domain-Driven Design. Addison-Wesley Professional,

2013.

19. Vernon V.: Reactive Messaging Patterns with the Actor Model: Applications and

Integration in Scala and Akka. Addison-Wesley Professional, 2015.

20. Wyatt D.: Akka Concurrency. Artima Press, 2013.

