
AUTOMATYZACJA PROCESÓW DYSKRETNYCH 2018 

   

 

 

 

 

Jarosław ŚMIEJA, Adam GAŁUSZKA  

Politechnika Śląska 

 

 

 

RULE-BASED PID CONTROL OF BLOOD GLUCOSE LEVEL 

 

Summary. The paper is concerned with closed loop control of blood glucose 

level in diabetic patients. Though recent research and clinical trials have already 

proved that PID and MPC controllers can be used on a daily basis, variability of 

physiological parameters in a single patient remains to be a challenge. In this 

work, the focus is on increased glucose metabolism due to physical activity. We 

show that a simple modification of PID control rule may lead to increased safety 

of diabetic patients, reducing the risk of hypoglycemic events. 

 

STEROWANIE REGUŁOWE PID POZIOMEM GLUKOZY WE KRWI 

 

Streszczenie. Artykuł dotyczy problemu sterowania ze sprzężeniem zwrotnym  

poziomem glukozy we krwi u pacjentów z cukrzycą. Chociaż ostatnie badania  

i próby kliniczne dowiodły, że regulatory PID i MPC mogą być powszechnie 

używane, wyzwaniem pozostaje uwzględnienie w sterowaniu zmienności 

parametrów fizjologicznych pacjenta. W pracy kładziony jest nacisk na 

zwiększony metabolizm glukozy spowodowany aktywnością fizyczną. Pokazuje 

się, że prosta modyfikacja wzmocnienia regulatora PID może prowadzić do 

zwiększenia bezpieczeństwa pacjentów z cukrzycą, poprzez zmniejszenie ryzyka 

wystąpienia hipoglikemii. 

 

1. Introduction 

   

Diabetes is regarded as the epidemics of the XXI century. It is estimated that one 

for every 11 persons in the world suffers from diabetes [1]. In Poland it is 

approximately 4.5% of the population [2]. The number of patients is on the rise and 

the burden on the health care system constantly increases. Moreover, The standard 

treatment protocol, involving Multiple Daily Injections (MDI) significantly reduces 

their lives comfort. 

Currently there are several large US and European projects underway aimed at 

implementation of a closed loop glucose control systems for diabetic patients and there 

are some systems available on the market. However, (1) these systems are not widely 

used yet, (2) they are prohibitively expensive; (3) their performance is far from ideal; 

and (4) they do not take into account additional, easy-to-obtain information that should 

reduce both the number of hypoglycemic events, fluctuations and average level of 

blood glucose, and overall insulin intake. This paper is focused on the latter aspect of 
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the systems under consideration, namely the influence of the physical exercise on the 

system performance. 

Diabetes is a group of metabolic diseases, of which the most frequently analyzed 

are Type 1 diabetes, Type 2 diabetes and gestational diabetes [3]. The first of these is 

associated with damage to the pancreatic beta cells and the resulting lack of 

endogenous insulin production. Patient survival depends entirely on the systematic 

monitoring  of blood glucose levels (BG) and the administration of insulin. The other 

two have their source in insulin resistance [4], understood as reduced sensitivity of 

cells to insulin, so that the same effect of reducing blood sugar levels requires much 

higher than normal amount of insulin. In the case of Type 2 diabetes, many patients 

eventually need insulin injections as well. 

Patients' treatment is aimed at lowering high blood sugar and maintaining it in 

the desired range of 80-130 [mg/dl] (4.4-7.2 [mmol/L]) in fasting state and within the 

range 100-150 [mg/dl] (5.5-8.5 [mmol/L]) during the day (the target level may vary 

depending on the patient) [5]. Standard treatment involves the injection of insulin or 

insulin analogues [6]  administered repeatedly throughout the day, with time and 

injected doses dependent on the planned meals. It is required to maintain a strict diet 

regime, because underestimating the required amount of insulin may lead to 

hyperglycemia, which is harmful for the body in a longer time horizon, while 

overestimation leads to a very dangerous hypoglycemia. To calculate the required 

amount of insulin, it is necessary to determine the difference between the current and 

desired blood glucose level, the amount of carbohydrates in the planned meal (using 

the available tables and calculators) and the estimation of patient insulin sensitivity. 

Because of the great difficulty in correctly estimating these parameters, the amount of 

insulin needed is usually underestimated to protect the patient from life-threatening 

hypoglycemia. Unfortunately, this leads to maintaining too much BG, and thus 

hyperglycemia. Moreover, high variability between patients [7] and one patient [8-10] 

have been reported, adding to a complexity of the problem.  

 

2. State of the art 

   

A variety of algorithms and control structures closed loop control of BG have 

been developed, including PID controllers [11-14], predictive (MPC) [15-17], adaptive 

(Eren-Oruklu, 2009), systems with feedback and feedforward loops [18], run-to-run 

regulation [19], fuzzy-logic [20] and neural network controllers [21]. Much effort was 

put into identifying parameters and validating models (e.g. [22-24]). In addition, 

because physiological parameters are associated with processes occurring inside the 

cells, especially in the case of type 2 diabetes, these processes have also been the 

subject of many studies conducted in terms of using their results to develop the so 

called artificial pancreas. An overview of the work on combining models describing 

processes at intracellular and tissue levels can be found, for example, in [25]. 

Despite the existence of many different types of controllers mentioned above and 

proposed as the basis of the automatic glucose control system, actually only two have 

found their way into clinical trials. They are the PID [12] and MPC [17] controllers. 

They provide an adequate level of safety and resistance to changes in physiological 

parameters. Results of various trials have been recently reported, with both in the case 
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of strictly controlled conditions and at home, with patients of all ages [9], [12], [26-

31]. 

Another innovation that has been proposed recently is addition of a second 

control signal, associated with the administration of glucagon, aimed at elimination of 

hypoglycemia events [32-33]. At the moment, however, these studies are in the initial 

phase and there are no such devices on the market. 
 

 

Fig. 1. A simplified block diagram of the control system 

 

3. Mathematical model 

   

Any control algorithm to be implemented should be first checked with numerical 

simulations, and these should be compared to available data. Various models of the 

glucose-insulin system have been proposed in the literature.  The simplest of them, so 

called minimal model was introduced by Bergman in 1982 and has been since widely 

used either in its original or modified form [22, 34]. A good review of this and other 

models can also be found e.g. in [35]. Parameters needed for computational models 

were identified on experimental and clinical data [22-24]. The general block diagram 

is presented in Fig. 1. 

A patient model consists of three subsystems (insulin-glucose, pharmacokinetics 

(PK), meal digestion). The first subsystem describes changes in glucose levels due to a 

specific concentration of insulin in the blood. It is based on the minimal Bergmann 

model [34], which, though developed in the previous century, proves to provide a good 

fit to BG measurement from current CGM devices. It consists of two differential 

equations, introducing as variable blood glucose levels G(t) and so-called the effect of 

insulin X(t): 

 Ġ(t) = −[p1 + 𝑝2X(t)]G(t) + p1Gb + Gin(t)    

 �̇�(𝑡) = −𝑋(𝑡) + 𝑝3𝐼(𝑡)     

where Gin(t) represents the rate of appearance of glucose in blood (the input from 

meals), Gb is basal glucose production, I(t) is insulin concentration in blood, p1, p2 and 

p3 are model parameters.  

The second subsystem describes the pharmacokinetics of insulin and is given by 

a simple first order linear model: 
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 İ(t) = k1Iin(t) − k2I(t)     (3) 

where Iin(t) represents the insulin dose injected by the control system. 

The last subsystem describes the dynamics of the appearance of glucose in blood 

There are several models of this subsystem. However, their outputs vary enormously. 

Some discussion of the differences can be found in [36]. We propose to use the oldest 

and the simplest one, as it allows for intuitive interpretation of its parameters and easy 

combining of subsequent meals. It is a modification of the Lehmann and Deutsch [36, 

37]. It is assumed that  the rate of appearance of glucose in blood, due to the ingested 

glucose, is proportional to the amount of glucose in the gut, which can be described by 

either a solution of a single differential equation [37] 

 𝐺𝑖𝑛(𝑡) = 𝑘𝑔𝑎𝑏𝑠𝐺𝑔𝑢𝑡(𝑡)    

where  

 �̇�𝑔𝑢𝑡(𝑡) = −𝑘𝑔𝑎𝑏𝑠𝐺𝑔𝑢𝑡(𝑡) + 𝐺𝑒𝑚𝑝𝑡(𝑡)     

with kgabs and Gempt(t) denoting a parameter and so called gastric emptying rate, 

respectively. The rate of appearance of glucose in blood, denoted by Gin is an input to 

the first equation in the minimal Bergman model: In [37], the time-course of the 

gastric emptying should follow either a triangular or trapezoidal curve, the type 

depending on the amount of the glucose (Fig. 2). It should be noted that these relations 

are a simplification, representing intravenous glucose injection in the original model. 

However, our studies have proven that such simplified model, when used with the 

Bergman minimal model (1)-(2), reproduces real-life data from CGM devices 

surprisingly well.  

The parameters indicated in Fig. 2 may vary in a broad range. The value of vmax is 

related to the age and weigth of a patient. The increasing slope α  depends on a 

glycemic index of the food digested, while the time Tmax is related to the meal size.  

 

 

Fig. 2. The shape of the Gin(t) for a small meal (left and large meal (right) 

 

4. Rule-based PID control 

   

Following recent reports, one can easily show that a PID controller is sufficient 

to keep the BG within desired range, assuming that physiological parameters do not 

vary significantly. 
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However, the system performance significantly decreases when physiological 

parameters change rapidly. This might occur, for example, if a patient performs 

intensive physical exercise, increasing the glucose metabolism (Fig.3). 

 

 

a)        b) 

 

c) 

Fig. 3. Simulation results for a standard PID controller, without physical exercise:  

(a) glucose from the meals; (b) blood glucose; (c) insulin input 

 

However, if the physiological parameters vary significantly, which is the case in 

the real world, the performance of the control system is not acceptable, as the BG fall 

into low levels (Fig. 4). The reason behind the significant drop in BG is in increased 

value of the parameter 𝑝2, due to increased demand for energy in cells during physical 

effort. This should be reflected in the control algorithm. Therefore, it seems natural to 

decrease the gain of the controller, following the manual switch of the controller into  

a “physical exercise” mode. This idea could be further expanded into automatic 

detection of the physical effort through, e.g., communication with a pulsometer. The 

proposed transfer function of the PID controller is then given by 

 𝐾𝐶(𝑠) =
𝑘

1+𝛼𝐸
(1 +

1

𝑇𝐼𝑠
+

𝑠𝑇𝐷

1+𝑠𝑇𝐷/𝑁
)    

where α is a controller parameter and E represents the physical effort. 
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To avoid oscillations in the lower range of BG, which are due to large TD 

parameter, required in the system, an additional rule has been proposed, to switch off 

the derivative part of the controller for BG below the set point. 

 

a)         b) 

 

c)         d) 

Fig. 4. Simulation results for a standard PID controller, with a physical exercise:  

(a) glucose from the meals; (b) physical effort; (c) blood glucose; (d) insulin 

input 
 

The system performance is better than the previous one (Fig. 5). Due to 

additional rule that has been applied, oscillation in the low BG range disappeared and 

the lowest BG has been increased. Nevertheless, the effort leads to BG that is too low. 

That is caused by the fact that the control is bounded by 0 value (the control is the 

insulin dose). Of course, if the physical activity took place earlier, one could show  

a satisfactory system behavior. However, this would be only a theoretical scenario, as 

usually extensive effort does not follow the meal immediately. 

 

a)         b) 

Fig. 5. Simulation results for a rule-based PID controller with a variable gain  and 

meal and physical effort setup as in the Fig. 4, with a physical exercise:  

(a) blood glucose; (b) insulin input 
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However, if the switch in the controller setup is user-driven, it can be done in 

advance, thus creating an additional  feedforward control. If this is used in a 

combination with a standard PID, the minimum BG is slightly increased (Fig. 6) but 

otherwise, the difference in the system performance is negligible. Better results are 

obtained when a combination of feedforward control and rule-based PID with a 

variable gain is used (Fig. 7). Once again, in such application and the setup of exercise 

parameters chosen for illustration, it is not possible to completely avoid the drop in 

BG, due to the constraints imposed on control variable. However, BG levels are kept 

in the range acceptable for diabetic patients. 

 

 

a)         b) 

Fig. 6. Simulation results for a rule-based PID controller with constant parameters, 

meal and physical effort setup as in the Fig. 4, with a physical exercise and its 

prediction: (a) blood glucose; (b) insulin input 

 

 

Fig. 7. Simulation results for a rule-based PID controller with a variable gain, meal 

and physical effort setup as in the Fig. 4, with a physical exercise and its 

prediction: (a) blood glucose; (b) insulin input 

 

5. Conclusions 

   

In the paper, a rule-based PID closed-loop control of blood glucose of diabetic 

patients has been proposed. It is based on two rules: 

• If the BG is below set-point, the derivative part of the controller should be 

switched off. 

• If a physical activity is planned, the controller should be set to an effort mode, in 

which the controller gain is significantly reduced. 
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The simulation results indicate that such approach yields better results than a 

standard PID control, reducing oscillations when BG is low and increasing the 

minimum BG during the exercise, thus reducing the risk of hypoglycemia. The 

proposed solution can be expanded by including pulsometer measurements in the 

controller tuning, though such option has not been tested yet. 
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