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ZANURZENIE METRYCZNEGO PROBLEMU KOMIWOJAŻERA W PRZE-
STRZENIACH EUKLIDESOWYCH

Streszczenie. Przedstawiamy problem zanurzenia metrycznego problemu komi-
wojażera w przestrzeniach euklidesowych. W pracy przedstawiono algorytm za-
nurzania problemu przedstawionego w postaci macierzy odległości. Efektem dzia-
łania algorytmu są położenia punktów w przestrzeni Euklidesowej. Dzięki takim
zanurzeniom uzyskuje się możliwość zastosowania znanych, bardzie efektywnych
algorytmów dla problemu TSP. Algorytm ten został przetestowany numerycznie
na przykładach ze zbioru TSPLIB.

EMBEDDING OF THE METRIC tsp INTO eUCLIDEAN SPACES

Summary. This paper presents a fast incremental algorithm for embedding the
metric TSP data sets in Euclidean spaces. The algorithm input is in a form of a
distance matrix. The result are positions in the Euclidean space. The application
of the proposed method allows for using more efficient methods for the Euclidean
TSP problem. Proposed method was tested on TSPLIB – standard set of bench-
marks for TSP.

1. Introduction

The traveling salesman problem (TSP) is one of most well known problems in
combinatorial optimization [7], [11]. The problem can be formulated as follows. Given
a complete undirected graph G = (V,E) with vertex set V and set of edges E, with
non-negative edge costs d : E → R+ , the objective is to find a Hamiltonian cycle in
G of minimum cost. In the general TSP formulation there are no restrictions on the cost
function. But, in general, TSP cannot be approximated in polynomial time (unless P =
NP). In order to find approximate solutions for TSP, one should require that instances of
the problem have costs that satisfy the triangle inequality (dij ¬ dik + dkj, i, j, k ∈ V ).
Such problem is known as the Metric TSP (MTSP) problem. The Euclidean TSP (ETSP)
is a special case of the Metric TSP. The vertex set V is consider as |V | = n points in
Rm, where m is fixed. The graph is complete and the Euclidean distance is used as a
cost function.

In this paper, we assume that only distance matrix D = (dij), i, j ∈ V is given.
Our goal is to check if the matrix an Euclidean distance matrix (EDM) [4], [5], to deter-
mine the minimum dimension m of the adequate Euclidean space and give the location
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of vertices V in this space. That is, possibly to determine the function ψ : V → Rm. It
is obvious that

Our motivations are twofolds:
1) Sanjeev Arora has found a Polynomial Time Approximation Scheme (PTAS) for Euc-
lidean TSP [2]. An algorithm admits the PTAS scheme, if for any fixed error parameter
ε > 1, the running time is bounded by a polynomial in n and the costs of solution (the
computed tour) does not exceed (1 + 1/ε)OPT , where OPT stands for the costs of
an optimal tour. Furthermore, it is known that there exists a constant c > 1, for which
c–approximation is NP-hard, if the TSP is metric [7], [6].
2) Even if the Metric TSP is not an ETSP , a low-dimensional finite vector space repre-
senting a part of the graph, or a decomposition of the problem onto several independent
partial low-dimensional Euclidean embeddings could be a source of new approximate
solutions.

The paper is organized as follows: firstly the motivation in form of a metric TSP
problem is given, then the problem of reconstruction euclidean distance matrix is gi-
ven, an algorithm for this reconstruction is proposed. Finally an account of numerical
experiments is presented as well as some propositions for further research.

2. The Metric TSP

The TSP problem is the MTSP if and only if:

• dij ¬ 0, i, j ∈ V ,

• dij = 0 if and only if i = j

• dij ¬ dik + dkj, i, j, k ∈ V
There is a special case of the Metric TSP called the Euclidean TSP. In the Euc-

lidean TSP, the weights of edges corresponds to the Euclidean distances between their
endpoints in the Euclidean space. Thus, there exists the function ψ : V → Rm, such that

dij = ||ψ(i)− psi(j)||, i, j ∈ V,

where || · || is the Euclidean norm in Rm. For the sake of simplicity of the notation we
will assume that |V | = n+ 1 and i, j ∈ {0, . . . , n}.

3. The Euclidean Distance Matrix Problem

Euclidean distance matrices (EDMs) have appeared during the last thirty years,
motivated by applications to the multidimensional scaling problem and molecular con-
formation problems in Biology [8]. These applications focus on the construction or re-
construction of sets of points such that the distances between these points are as close as
possible to a given set of inter-point distances

Define aij = d2ij as a squared distance between nodes i ∈ V and j ∈ V . Matrix
A = {aij} is the distance matrix if and only if all elements on the diagonal of A are
zero, the matrix is symmetric, i.e., aij = aji , aij  0 and (by the triangle inequality)

√
aij ¬

√
aik +

√
akj.
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Theorem 1. ( [8], [10], [14]) A necessary and sufficient condition for the isometric em-
beddability of a finite metric set (S, d) of n + 1 elements in an Euclidean space Rn is
that the following statement be true:
The matrix [12(a0i + a0j − aij)]i,j=1,...,n is positive definite.

There are also known a conditions of embeddability based on the Cayley-Menger
derterminants [8], [15], but discussion of that approach is out of scope of our paper.

It is well known that a complete graph embedded in Rm is rigid in Rm [1]. An
embedding is locally unique [13], i.e., we say that p : V → Rm and q : V → Rm are
congruent, if

||pi − pj|| = ||qi − qj||
for all pairs i, j ∈ V . As a consequence, if a MTSP is the Euclidean Problem, any
solution ψ : V → Rm is locally unique.

4. An Incremental Algorithm for Embedding MTSP in the Euclidean Space

In this section we provide an computionally efficient algorithm for embedding
the MTSP in the Euclidean Space. We assume that the true dimension is not known.
The algorithm provides the dimension number of the embedding and the locally unique
embedding of V when the TSP is the ETSP. In such a case the embedding does not
depend on the vertex chosen as a starting point.

We assume that metric distance matrix D = [dij]ij,0,...,n and squared distance
matrix A = [d2ij]ij,0,...,n are given. We begin with a set of three vertices, let say, vertices
labeled by 0, 1 and 2. It is obvious that these vertices can be embedded in R2 and this
embedding is locally unique. Vertex-representing points form a triangle and the shape
of this triangle is unique. So, without loss of the generality we can locate vertex v0 in
x0 = (0, 0), v1 in x1 = (d01, 0) and v2 in x2 = (x21, x22), where x2 coordinates are
obtained by solving the following system of two equations:

(x21 − x01)2 + (x22 − x02)2 = a02,

(x21 − x11)2 + (x22 − x12)2 = a12.

The system simplifies to

x221 + x
2
22 = a02, (x21 − d01)2 + x222 = a12.

Further, substracting the first equation from the second one, we arrive at:

−2d01x21 + a01 = a12.

Thus, x21 = −0.5(a12 − a01)/d01 , and consecutively

x222 = a02 −
(a12 − a01)2

4a01
.

Due to the triangle inequality,

a02 −
(a12 − a01)2

4a01
 0.
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Thus, there exist at most two solutions of the system with x22 being a positive or a
negative real number. When points x1, x2, x3 are colinear, x22 = 0 and the embedding
dimension is m = 1. As a consequence, all coordinates x2̇ can be neglected and could
be removed.

Adding a new vector to the Euclidean space leads to the following problem:

Problem 1. Let’s assume that we have given coordinates of r + 1 points representing
an embedding of Vr ⊂ V , |Vr| = r + 1 in a Euclidean space, i.e., x0, x1, . . . xr ∈ Rs. s
is dimension of the Euclidean space, s ¬ r. It is clear, that we have:

||xi − xj||2 = aij, i, j ∈ 0, . . . , r.

Find a vector representing a new vertex, let say, vr+1 ∈ V − Vr.

It is clear that the dimension of the Euclidean embedding space could be larger.
Namely, m = s+ 1 or m = s.

Our goal is to find

xr+1 = (xr+1,1, xr+1,2, . . . , xr+1,s+1)

such that
||xi − xr+1||2 = ai,r+1, i = 0, 1, . . . , r, (1)

where dimension of all points Xr = [xi]i=0,1,...,r is expanded to s+ 1, and the (s+ 1)-th
coordinates of all vectors in Xr are set to zero. If xr+1 ∈ Rs+1 exists and xr+1,s+1 = 0
the system of r+1 points lays in s dimensional Euclidean space, ie., x1, x2, . . . xr, xr+1 ∈
Rs. All last coordinates could be removed or neglected. When xr+1,s+1 6= 0, the new
dimension is s+1. The lack of a real solution means that the metric d is not a Euclidean
metric. Observe, that system of equations (1) is equivalent to the system consisting of

s+1∑
j=1

x2r+1,j = a0,r+1, (2)

and, after substraction, of the system of r linear equations

min[i,s]∑
j=1

xi,jxr+1,j =
1
2
[a0,i − ai,r+1], i = 1, . . . , r. (3)

System (3) can be overderminated (when s < r) but consistent. Thus, the solution of (3)
can be obtained using ordinary least square method. The first s coordinates of xr+1 are
given by:

X TXxr+1(1 : s)T = X T b, (4)

where xr+1(1 : s) = (xr+1,1, . . . , xr+1,s), b = 1
2 [a0,i − ai,r+1]Ti=1,...,r and X =

[xij]Ti=1:r,j=1:s ∈ Rs×r. The computational complexity of solving (3) is O(r3). Thus, the
computational complexity of embedding V , is O(n4) [16]. Furthermore, using triangle-
like structure of X , it is possible to get complexities O(r2) and O(n3), respectively.
Nevertheless, the more complex approach allows us better control numerical errors.

There are known conditions which guarantee that the real solution of (2)-(3) exists
[4], [9], [8], [15], but verifying these conditions has similar computational complexity
as a direct solving of the problem.
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Table 1
Dependence of dimensionality on required accuracy ε.

ε 1.0e-03 5.0e-03 1.0e-02 5.0e-02 1.0e-01 5.0e-01 1.0e+00 5.0e+00
d 7 7 6 3 2 2 1 1

5. Experiments

The well known and widely used set of benchmarks for TSP problems is called
TSPLIB, originally published in [12] . The optimal solutions for those problems are
known (at http://www.iwr.
uni-heidelberg.de/groups/comopt/software/TSPLIB95). The set consists of 111 different
problem in 6 general types. Of these we are interested in the following groups:

• symmetric problems with euclidean 2D distances,

• symmetric problems with explicit weights in form of distance matrices.

The implementation of algorithm described in previous section was done in Py-
thon programming language, linear algebra methods came from numpy.linalg pac-
kage. The implemented algorithm made use of least-square method of solving the over-
defined linear system (3) in order to reduce possible numerical error. Even with LSQ
method, the decision whether to add additional dimension require some decision point.
We had chosen

xr+1(s+ 1) ¬ ε,

where ε is dependent on scale (in the sense of distances not number of elements) of the
specific problem. The easiest choice is

ε = ε ·max
ij

aij

As a method of verification of the concept and its accuracy the 61 problems of
type EUC_2D (two dimensional problems where coordinates of the cities are known and
the distance is calculated as simple euclidean norm) were converted to distance matrices.
We know the exact dimensionality is 2. By this reversed method we can easily verify
accuracy of the result.

In the fig. 1 we can see the results of the reconstruction in the comparison to
original data. The resulting image is accurate with respect rotation and mirroring. The
general accuracy was around ε = 10−5.

All experiments with data of known dimensionality had shown that the choice of
ε (which generates ε) is crucial to accuracy of reconstruction. If we are too generous
with this parameter the resulting dimension might be correct but some points will be put
into space with smaller then required dimension and then inaccuracy would occur.

Overall the correct results for all 61 problem were achieved with ε = 10−5.
After confirming the feasibility of the idea we had proceed to problems where

dimension is not known. Only distances between points (towns) are known. The good
example is a bayg29 problem coming from distances between Bavarian towns. As this
region is located in highlands and mountains we can expect at least 3 dimension. The
actual distances differ from simple 3D euclidean distances due to requirements of a road
construction in such difficult terrain.
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Fig. 1. Original (first) and reconstructed (second) layout of a280 problem from tsplib
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Fig. 2. A 3D reconstruction of bayg29 distances

The results of reconstruction can be seen in fig. 2. The resulting dimensionality
depends on required accuracy, that dependence can be seen in tab. 1.

Overall the numerical experiments had shown the proposed algorithm can provide
good results with carefully chosen accuracy.

6. Comments and conclusions

The proposed method was extensively tested with problems from well-know
TSPLIB. The results were promising. Careful selection of accuracy parameter can pro-
vide exact solution or approximation with reduced dimension.

The proposed algorithm provides the dimension number of the embedding and
a partial embedding when the TSP is not Euclidean as a whole. In such a case the par-
tial embedding depends on the vertex chosen as a starting point. The problem of partial
embedding of the MTSP is combinatorial in nature and requires exponential-time com-
plexity to be solved. In our opinion it is a new open problem which is worth further
research. This direction of research is also important in the case of the ETSP problem.
InRm, the PTAS has space and time complexities of O

(
n(log n)(O(

√
mε))(m−1)

)
, but the
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dimension should be relatively small in comparison to n (i.e., O(log log n)) in order to
get the polynomial running time [3].
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