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STABILNOŚĆ PRZEDZIAŁOWYCH DODATNICH DYSKRETNYCH 

UKŁADÓW LINIOWYCH RZĘDU CAŁKOWITEGO I NIECAŁKOWITEGO 

 

Streszczenie. W pracy podano analizę stabilności przedziałowych dodatnich 

układów liniowych dyskretnych opisanych równaniami różnicowymi rzędu 

całkowitego i niecałkowitego (ułamkowego). Uogólniono twierdzenie 

Kharitonova ( Charitonova) na dodatnie przedziałowe układy liniowe dyskretne 

rzędu całkowitego i niecałkowitego (ułamkowego).Wykazano, że: 

1) przedziałowy dodatni układ 211 ,, AAAAAxx nn

ii  

  jest stabilny 

asymptotycznie wtedy i tylko wtedy gdy macierze 2,1, iAi  są macierzami 

Schura, 

2) przedziałowy dodatni układ jest stabilny asymptotycznie jeżeli dolne 

ograniczenia współczynników wielomianu charakterystycznego są dodatnie, 

3) przedziałowy dodatni układ dyskretny linowy rzędu niecałkowitego jest 

stabilny asymptotycznie wtedy i tylko wtedy gdy układ dolnego ograniczenia jest 

stabilny asymptotycznie. 

 

STABILITY OF INTERVAL POSITIVE STANDARD AND FRACTIONAL 

DISCRETE-TIME LINEAR SYSTEMS 

 

Summary. The stability of interval positive discrete-time linear systems is 

addressed. It is shown that: 

1) The interval positive system 211 ,, AAAAAxx nn

ii  

  is asymptotically 

stable if and only if the matrices 2,1, iAi  are Schur matrices. 

2) The interval positive system is asymptotically stable if the lower bounds of 

coefficients of its characteristic polynomial are positive. 

3) The interval positive fractional discrete-time linear systems are asymptotically 

stable if and only if the lower bounds systems are asymptotically stable. 

The classical Kharitonov theorem is extended to the interval positive fractional 

linear systems 

 

1. Introduction  

  

 A dynamical system is called positive if its state variables take nonnegative 

values for all nonnegative inputs and nonnegative initial conditions. The positive linear 

systems have been investigated in [1, 5, 11] and positive nonlinear systems in [6, 7, 9, 
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17, 18]. Examples of positive systems are industrial processes involving chemical 

reactors, heat exchangers and distillation columns, storage systems, compartmental 

systems, water and atmospheric pollution models. A variety of models having positive 

linear behavior can be found in engineering, management science, economics, social 

sciences, biology and medicine, etc. 

 Mathematical fundamentals of the fractional calculus are given in the 

monographs [24-28]. Fractional dynamical linear and nonlinear systems have been 

investigated in [6, 8, 10, 13, 15, 18, 28-34]. 

 Positive linear systems with different fractional orders have been addressed in [3, 

12, 14, 22,31]. Descriptor (singular) linear systems have been analyzed in [9, 15, 16] 

and the stability of a class of nonlinear fractional-order systems in [6, 18, 25]. 

Application of Drazin inverse to analysis of descriptor fractional discrete-time linear 

systems has been presented in [8].Comparison of three method of analysis of the 

descriptor fractional systems has been presented in [30]. Stability of linear fractional 

order systems with delays has been analyzed in [2] and simple conditions for practical 

stability of positive fractional systems have been proposed in [4]. The stability of 

interval positive continuous-time and discrete-time linear systems have been addressed 

in [20, 21]. 

 In this paper the asymptotic stability of interval positive standard and fractional 

discrete-time linear systems will be addressed. 

 The paper is organized as follows. In section 2 some basic definitions and 

theorems concerning positive linear systems and polynomials with interval coefficients 

are recalled. In section 3 the stability of positive interval linear systems described by 

the state equation is investigated. In section 4 some basic definitions and theorems 

concerning positivity and stability of fractional discrete-time linear systems are 

recalled. Stability of the interval positive fractional linear systems is analyzed in 

section 5. Convex linear combination of Schur polynomials and the stability of interval 

positive discrete-time linear systems is investigated in section 6. Concluding remarks 

are given in section 7. 

 The following notations will be used:   - the set of real numbers, mn  - the set 

of mn  real matrices, mn

  - the set of mn  real matrices with nonnegative entries 

and 1

  nn , nM  - the set of nn  Metzler matrices (real matrices with nonnegative 

off-diagonal entries), nI  - the nn  identity matrix, for nn

ijaA  ][  and 
nn

ijbB  ][  inequality BA  means ijij ba   for nji ,...,2,1,  . 

 

2. Preliminaries  

 

Consider the autonomous continuous-time linear system 

,0),()(  ttAxtx ,                                                          (2.1) 

where ntx )(  is the state vector and nnA  . 

Definition 2.1. [5, 11] The system (2.1) is called positive if ntx )( , 0t  for any 

initial conditions nxx  )0(0 . 

Theorem 2.1. [5, 11] The system (2.1) is positive if and only if its matrix A is the 

Metzler matrix.  
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Definition 2.2. [5, 11] The positive system (2.1) is called asymptotically stable if 

0)(lim 


tx
t

 for all finite nx )0( . 

Theorem 2.2. [5, 11] The positive system (2.1) is asymptotically stable if and only if 

one of the equivalent conditions is satisfied: 

1) All coefficient of the characteristic polynomial 

01

1

1 ...]det[ asasasAsI n

n

n

n  

                                     (2.2) 

are positive, i.e. 0ka  for 1,...,1,0  nk . 

2) All principal minors iM , ni ,...,1  of the matrix A  are positive, i.e. 

0111  aM , 0
2221

1211

2 





aa

aa
M , …, 0]det[  AMn .                 (2.3) 

3) There exists strictly positive vector T

n

T ][ 1   , 0k , nk ,...,1  such that 

0A  or 0TA .                                                              (2.4) 

If 0det A  then we may choose cA 1 , where nc   is any strictly positive 

vector. 

Consider the set (family) of the n-degree polynomials  

01

1

1 ...:)( asasasasp n

n

n

nn  

                                             (2.5a) 

with the interval coefficients 

.,...,1,0, niaaa iii                                              (2.5b) 

Using (2.5) we define the following four polynomials: 

...:)(

...:)(

...:)(

...:)(

5

5

4

4

3

3

2

2104

5

5

4

4

3

3

2

2103

5

5

4

4

3

3

2

2102

5

5

4

4

3

3

2

2101









sasasasasaasp

sasasasasaasp

sasasasasaasp

sasasasasaasp

n

n

n

n

                              (2.6) 

Kharitonov Theorem: The set of polynomials (2.5) is asymptotically stable if and 

only if the four polynomials (2.6) are asymptotically stable. 

Proof is given in [23]. 

 Consider the autonomous discrete-time linear system 

 ,...1,0,1   ZiAxx ii                                              (2.7) 

where nx   is the state vector and nnA   

Definition 2.3. [5, 11] The discrete-time linear system (2.7) is called (internally) 

positive if n

ix  , Zi for any initial conditions nx 0 . 

Theorem 2.3. [5, 11] The discrete-time linear system (2.7) is positive if and only if  
nnA 

                                                           (2.8) 

Definition 2.4. [5, 11] The positive discrete-time linear system (2.7) is called 

asymptotically stable if 

0lim 


i
i
x  for any nx 0 .                                           (2.9) 

Theorem 2.4. The positive discrete-time linear system (2.7) is asymptotically stable if 

and only if one of the following equivalent conditions is satisfied: 

1) All coefficient of the polynomial 

01

1

1 ...])1(det[)( azazazAzIzp n

n

n

nn  

                             (2.10) 
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are positive, i.e. 0ia  for 1,...,1,0  ni . 

2) All principal minors of the matrix ][ ijn aAIA   are positive, i.e. 

0111  aM , 0
2221

1211
2 

aa

aa
M , …, 0det  AMn .                 (2.11) 

3) There exists strictly positive vector ][ 1 n

T   , 0i , ni ,...,1  such 

that 

 A .                                                              (2.12) 

If nn MIA  ][  is asymptotically stable then we may choose cAIn
1][  , where 

nc   is strictly positive. 
 

3. Stability of positive interval linear system 
 

Consider the interval positive linear discrete-time system 

 ii Axx 1                                                              (3.1) 

where n

ix  is the state vector and the matrix nnA 

  is defined by 

21 AAA   or equivalently ],[ 21 AAA                                    (3.2) 

Definition 3.1. The interval positive system (3.1) is called asymptotically stable if the 

system is asymptotically stable for all matrices  nnA 

  satisfying the condition (3.2). 

By condition (2.12) of Theorem 2.4 the positive system (3.1) is asymptotically stable if 

and only if there exists strictly positive vector 0 such that (2.12) holds. 

For two positive linear systems  

ii xAx ,111,1  , nnA 

1                                              (3.3a) 

and 

ii xAx ,221,2  , nnA 

2                                             (3.3b) 

there exists a strictly positive vector n

  such that  

 1A  and  2A                                                   (3.4) 

if and only if the systems (3.3) are asymptotically stable. 

Example 3.1. Consider the positive linear system (3.1) with the matrices 




















5.04.0

1.06.0
,

3.03.0

2.07.0
21 AA                                       (3.5) 

Note that for ]11[T  we have 





































1

1

6.0

9.0

1

1

3.03.0

2.07.0
1A                                      (3.6a) 

 





































1

1

9.0

7.0

1

1

5.04.0

1.06.0
2A                                      (3.6b) 

Therefore, by the condition (2.12) of Theorem 2.4 the positive systems are 

asymptotically stable. 

Theorem 3.1. If the matrices nnA 

1  and nnA 

2  of positive systems (3.3) are 

asymptotically stable then their convex linear combination 

21)1( kAAkA   for 10  k                                           (3.7) 

is also asymptotically stable. 



Stabilność przedziałowych ...  107 
 

Proof. By condition (2.12) of Theorem 2.4 if the positive linear systems (3.3) are 

asymptotically stable then there exists strictly positive vector n

 such that (3.4) 

holds. 

Using (3.7) and (3.4) we obtain 

  kkkAAkkAAkA )1()1(])1[( 2121  for 10  k               (3.8) 

Therefore, if the positive linear systems (3.3) are asymptotically stable and (3.4) holds 

then their convex linear combination is also asymptotically stable. □ 

Theorem 3.2. The interval positive system (3.1) is asymptotically stable if and only if 

the positive systems (3.3) are asymptotically stable.  

Proof. By condition (2.12) of Theorem 2.4 the matrices nnRA 
1 , nnRA 

2  are 

asymptotically stable if and only if there exists a strictly positive vector n

 , such 

that (3.4) holds. The convex linear combination (3.7) satisfies the condition 0A  if 

and only if (3.4) holds. Therefore, the interval positive system (3.1) is asymptotically 

stable if and only if the positive systems (3.3) are asymptotically stable. □ 

Example 3.2. Consider the interval positive linear system (3.1) with the matrices 




















5.04.0

2.08.0
,

3.02.0

1.05.0
21 AA                                              (3.9) 

For the matrices (3.9) we choose T]85.095.0[ and we obtain 









































































85.0

95.0

805.0

93.0

85.0

95.0

5.04.0

2.08.0

85.0

95.0

445.0

56.0

85.0

95.0

3.02.0

1.05.0

2

1





A

A

                                   (3.10) 

Therefore, by Theorem 3.2 the interval positive system (3.1) with (3.9) is 

asymptotically stable. 

 

4. Fractional discrete-time systems 

 

 Consider the autonomous fractional discrete-time linear system 

ii Axx  1

 , 10  , Zi ,                          (4.1) 

where 





i

j

jiji xcx
1

 ,                                              (4.2a)  











j
c j

j


)1( , 






















,...2,1for
!

)1)...(1(

0for1

j
j

j

j

j



             (4.2b) 

is the fractional α-order difference of ix  and n

ix  , m

iu   are the state and input 

vectors and nnA  . 

Substitution of (4.2) into (4.1) yields 






 
1

2

11

i

j

jijii xcxAx  , Zi ,                                   (4.3a) 

where 

 nIAA  .                                                    (4.3b) 
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Lemma 4.1.[19] If 10   then 

1) 0 jc  for ,...2,1j          (4.4a) 

2) 1
1




n

j

jc .                     (4.4b) 

Definition 4.1. [19] The fractional system (4.1) is called (internally) positive if  
n

ix  , Zi  for any initial conditions nx 0 . 

Theorem 4.1. [19] The fractional system (4.1) is positive if and only if  

nMA  .                                                           (4.5) 

Definition 4.4. The fractional positive system (4.1) is called asymptotically stable if 

0lim 


i
i
x  for all nx 0 .                                     (4.6) 

Theorem 4.4. [19] The fractional positive system (4.1) is asymptotically stable if and 

only if one of the equivalent conditions is satisfied: 

1) All coefficient of the characteristic polynomial 

01

1

1 ...])1(det[)( azazazAzIzp n

n

n

nA  

                                     (4.7) 

are positive, i.e. 0ka  for 1,...,1,0  nk . 

2) All principal minors of the matrix  



















nnn

n

n

aa

aa

AIA

...

...

...

1

111

                                          (4.8) 

are positive, i.e. 

011 a , 0
2221

1211


aa

aa
, …, 0det A .                          (4.9) 

3) There exists strictly positive vector T

n

T ][ 1   , 0k , nk ,...,1  such that 

0][  nIA .                                               (4.10) 

Theorem 4.3. The fractional positive system (4.1) with (4.3b) is asymptotically stable 

if and only if there exists a strictly positive vector 0  such that 

.   0A                                                   (4.11) 

Proof. Note that the positive fractional system (4.3) can be considered as a positive 

linear system with increasing to infinity numbers of delays. It is well-known [19] that 

the stability of positive discrete-time linear systems depends only on the sum of state 

matrices 







2

ˆ

j

nj IcAA  ,                                            (4.12) 

From (4.4b) we have 







2

1
j

jc  .                                               (4.13) 

Substituting (4.13) into (4.12) we obtain 

nn IAIAA  )1(ˆ  ,                                            (4.14) 

since  nIAA  . 

Applying the condition (4.10) to (4.14) we obtain (4.11). □ 
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Example 4.1. Consider the fractional discrete-time system (4.1) for 6.0  with the 

matrix 















5.03.0

2.04.0
A .                                              (4.15) 

The fractional system is positive since the matrix 

22

2
1.03.0

2.02.0










  IAA                                     (4.16) 

has positive entries. 

The positive fractional system is asymptotically stable since for ]11[T  we have 

0
2.0

2.0

1

1

5.03.0

2.04.0


































A                                  (4.17) 

and the condition (4.11) is satisfied. 

 

5. Fractional interval positive linear continuous-time systems 

 

 Consider the interval fractional positive discrete-time linear system (4.1) with the 

interval matrix nnA 

  defined by 

21 AAA   or equivalently ],[ 21 AAA .                                 (5.1) 

Definition 5.1. The interval fractional positive system with (5.1) is called 

asymptotically stable if the system is asymptotically stable for all matrices nnA 

  

belonging to the interval ],[ 21 AA . 

By condition (4.11) of Theorem 4.3 the interval fractional positive system is 

asymptotically stable if and only if there exists strictly positive vector 0 such that 

0A   for all ],[ 21 AAA . 

Definition 5.2. The matrix 

21)1( kAAkA  , 10  k , nnA 1 , nnA 2                         (5.2) 

is called the convex linear combination of the matrices A1 and A2.  

Theorem 5.1. The convex linear combination (5.2) is asymptotically stable if and only 

if the matrices nnA 1  and nnA 2  are asymptotically stable. 

Proof. If the matrices nnA 1  and nnA 2  are asymptotically stable then by 

condition (4.11) of Theorem 4.3 there exists strictly positive vector n

  such that 

0lA  for 2,1l .                                              (5.3) 

In this case using (5.2) and (5.3) we obtain 

0)1(])1[( 2121   kAAkkAAkA  for 10  k .                 (5.4) 

Therefore, if the matrices lA , l = 1,2 are asymptotically stable then the convex linear 

combination (5.2) is also asymptotically stable. Necessity follows immediately from 

the fact that k can be equal to zero and one. □ 

Theorem 5.2. The interval fractional positive system (4.1) with (5.1) is asymptotically 

stable if and only if the matrices nnA 1  and nnA 2  are Schur matrices. 

Proof. By condition (4.11) of Theorem 4.3 the matrices nnA 1  and nnA 2  are 

Schur matrices if and only if there exists strictly positive vector n

  such that (5.3) 

holds. The convex linear combination (5.2) satisfies the condition 0A if and only if 
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(5.3) holds. Therefore, the interval fractional positive systems (4.1) with (5.1) is 

asymptotically stable if and only if nnA 1  and nnA 2  are Schur matrices. □ 

Example 5.1. Consider the interval fractional positive linear systems (4.1) with the 

matrices 




























6.02.0

3.05.0
,

4.005.0

1.03.0
21 AA                                       (5.5) 

It is easy to check that for ]11[T  we have 

0
4.0

2.0

1

1

6.02.0

3.05.0

0
35.0

2.0

1

1

4.005.0

1.03.0

2

1











































































A

A

                                  (5.6) 

Therefore, by Theorem 5.2 the interval fractional positive system (4.1) with (5.1) is 

asymptotically stable. 

 

6. Convex linear combination of Schur polynomials and stability of interval 

fractional positive linear systems 
  

Definition 6.1. The polynomial  

01

1

1 ...)( bzbzbzbzp n

n

n

n  

                                             (6.1) 

is called Schur polynomial if its zeros nlzl ,...,1,   satisfy the condition  

1lz  for nl ,...,1 .                                               (6.2) 

Definition 6.2. The polynomial  

]1,0[for)()()1()( 21  kzkpzpkzp                                       (6.3) 

is called convex linear combination of the polynomials  

0,1,

1

1,, ...)( ii

n

ni

n

nii bzbzbzbzp  

 , 2,1i .                               (6.4) 

Theorem 6.1.[21] The convex linear combination of the Hurwitz polynomials is also a 

Hurwitz polynomial. 

For positive linear systems we have the following relationship between Hurwitz and 

Schur polynomials. 

Theorem 6.2. The polynomial 

01

1

1 ...)( asasasasp n

n

n

n  

                                       (6.5) 

is Hurwitz and the polynomial 

01

1

1 ...)( bzbzbzbzp n

n

n

n  

                                        (6.6) 

is Schur polynomial if and only if their coefficients ai and bi ni ,...,1,0  are related by 

.

,

,...2

,...

11

211

100

nn

nnn

n

n

ba

nbba

nbbba

bbba











                                                     (6.7) 
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Proof. It is well-known [19] that for positive linear discrete-time and continuous-time 

systems the zeros nlzl ,...,1,   of the polynomial (6.6) and the zeros nlsl ,...,1,   of 

the polynomial (6.5) are related by 

1 ll sz , nl ,...,1 .                                               (6.8) 

Substituting 1 sz  into the polynomial (6.6) we obtain 

01

1

101

1

1 ...)1(...)1()1( asasasabsbsbsb n

n

n

n

n

n

n

n  





        (6.9) 

and it is easy to verify that the coefficients ai and bi ni ,...,1,0  are related by (6.7). 

The polynomial (6.5) is Hurwitz if and only if ai > 0 for ni ,...,1,0  and the polynomial 

(6.6) is Schur if and only if bi > 0 for ni ,...,1,0 . From (6.7) it follows that bi  > 0, 

ni ,...,1,0  implies ai > 0 for ni ,...,1,0 . □ 

Example 6.1. The polynomial 

  08.06.0)( 2  zzzp                                                     (6.10) 

of positive discrete-time linear system is Schur polynomial since its zeros are: 

4.0,2.0 21  zz . 

Substituting 1 sz  into (6.10) we obtain 

68.16.208.0)1(6.0)1()( 22  sssssp                               (6.11) 

with the zeros 4.1,2.1 21  ss . Therefore, the polynomial (6.11) is Hurwitz. 

Theorem 6.3. The interval positive fractional discrete-time linear system with the 

characteristic polynomial (6.6) is asymptotically stable if the lower ib  and the upper ib

, ni ,...,1,0  bounds of its coefficients are positive. 

Proof. From (6.7) it follows that 0ib , ni ,...,1,0  implies ai > 0 for ni ,...,1,0  and 

the characteristic polynomial (6.5) is Hurwitz. By Theorem 2.2 the continuous-time 

system is asymptotically stable. Similar result we obtain for the upper bound. 

Therefore, the interval fractional positive discrete-time system (6.6) is asymptotically 

stable if the lower and upper bound of the coefficients are positive. □ 

Remark. 6.1. The equalities (6.7) can be used to compute the lower and upper bounds 

of the coefficients ai, ni ,...,1,0  of polynomial (6.5) knowing the lower and upper 

bounds of the coefficients bi, ni ,...,1,0  of polynomial (6.6). 

Example 6.2. Consider the characteristic polynomial 

01

2

2)( bzbzbzp                                              (6.12) 

of positive fractional discrete-time systems with the interval coefficients 

41,32,31 012  bbb .                                      (6.13)                                           

The equivalent characteristic polynomial of continuous-time system has the form 

01

2

201

2

2 )1()1()( asasabsbsbsp                            (6.14) 

where 

210021122 ,2, bbbabbaba  .                             (6.15) 

Therefore, the interval coefficients of characteristic polynomial of continuous-time 

system are 

104,94,31 012  aaa .                             (6.16) 

By Theorem 6.3 the interval positive discrete-time linear system with (6.12) is 

asymptotically stable since the lower bounds (6.16) are positive. 
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7. Concluding remarks 
  

The asymptotic stability of interval positive linear discrete-time systems has been 

addressed. It has been shown that: 

The interval positive system (3.1) is asymptotically stable if and only if the matrices 

2,1, iAi  are Schur matrices (Theorem 3.2, 5.2). The convex linear combination of the 

Hurwitz polynomials is also the Hurwitz polynomial (Theorems 6.1). 

The interval positive system is asymptotically stable if the lower bounds of 

coefficients of the polynomial of system are positive (Theorem 6.3). The 

considerations have been illustrated by numerical examples of positive interval 

discrete-time systems. The considerations can be extended to continuous-time positive 

standard and fractional linear systems. An open problem is an extension of the 

considerations to nonpositive standard and fractional discrete-time and continuous-

time linear systems. 

 

Acknowledgment 
This work was supported by National Science Centre in Poland under work 

No. 2014/13/B/ST7/03467. 

 

REFERENCES 

 

1. Berman A., Plemmons R.J.: Nonnegative Matrices in the Mathematical Sciences, 

SIAM, 1994. 

2. Busłowicz M.: Stability of linear continuous-time fractional order systems with 

delays of the retarded type, Bull. Pol. Acad. Sci. Tech., vol. 56, no. 4, 2008,  

p. 319-324. 

3. Busłowicz M.: Stability analysis of continuous-time linear systems consisting of n 

subsystems with different fractional orders, Bull. Pol. Acad. Sci. Tech., vol. 60, 

no. 2, 2012, p. 279-284. 

4. Busłowicz M., Kaczorek T.: Simple conditions for practical stability of positive 

fractional discrete-time linear systems, Int. J. Appl. Math. Comput. Sci., vol. 19, 

no. 2, 2009, p. 263-169. 

5. Farina L., Rinaldi S.: Positive Linear Systems; Theory and Applications,  

J. Wiley, New York, 2000. 

6. Kaczorek T.: Analysis of positivity and stability of fractional discrete-time 

nonlinear systems, Bull. Pol. Acad. Sci. Tech., vol. 64, no. 3, 2016, p. 491-494. 

7. Kaczorek T.: Analysis of positivity and stability of discrete-time and continuous-

time nonlinear systems, Computational Problems of Electrical Engineering, vol. 

5, no. 1, 2015. 

8. Kaczorek T.: Application of Drazin inverse to analysis of descriptor fractional 

discrete-time linear systems with regular pencils, Int. J. Appl. Math. Comput. 

Sci., vol. 23, no. 1, 2013, p. 29-34. 

9. Kaczorek T: Descriptor positive discrete-time and continuous-time nonlinear 

systems. Proc. of SPIE, vol. 9290, 2014, DOI :10.1117/12.2074558. 

10. Kaczorek T.: Fractional positive continuous-time linear systems and their 

reachability, Int. J. Appl. Math. Comput. Sci., vol. 18, no. 2, 2008, p. 223-228. 



Stabilność przedziałowych ...  113 
 

11. Kaczorek T.: Positive 1D and 2D Systems, Springer-Verlag, London, 2002. 

12. Kaczorek T.: Positive linear systems with different fractional orders, Bull. Pol. 

Acad. Sci. Techn., vol. 58, no. 3, 2010, p. 453-458. 

13. Kaczorek T., Positivity and stability of standard and fractional descriptor 

continuous-time linear and nonlinear systems. Int. J. of Nonlinear Sciences and 

Num. Simul., 2017 (in press)   

14. Kaczorek T.: Positive linear systems consisting of n subsystems with different 

fractional orders, IEEE Trans. on Circuits and Systems, vol. 58, no. 7, 2011,  

p. 1203-1210. 

15. Kaczorek T.: Positive fractional continuous-time linear systems with singular 

pencils, Bull. Pol. Acad. Sci. Techn., vol. 60, no. 1, 2012, p. 9-12. 

16. Kaczorek T.: Positive singular discrete-time linear systems, Bull. Pol. Acad. Sci. 

Tech., vol. 45, no. 4, 1997, p. 619-631. 

17. Kaczorek T.: Positivity and stability of discrete-time nonlinear systems, IEEE 2nd 

International Conference on Cybernetics, 2015, p. 156-159. 

18. Kaczorek T.: Stability of fractional positive nonlinear systems, Archives of 

Control Sciences, vol. 25, no. 4, 2015, 491-496, DOI: 10.1515/acsc-2015-0031. 

19. Kaczorek, T. Selected Problems of Fractional Systems Theory, Springer, Berlin 

2012. 

20. Kaczorek T.: Stability of interval positive discrete-time linear systems, Int. J. 

Appl. Math. Comput. Sci., 2018 (in Press). 

21. Kaczorek T.: Stability of interval positive continuous-time linear systems, Bull. 

Pol. Acad. Sci. Tech., vol.66.no.1,2018. 

22. Kaczorek T., Rogowski K., Fractional Linear Systems and Electrical Circuits. 

Studies in Systems, Decision and Control, vol. 13, Springer 2015. 

23. Kharitonov V.L., Asymptotic stability of an equilibrium position of a family of 

systems of differential equations, Differentsialnye uravneniya, vol. 14, 1978,  

p. 2086-2088. 

24. Ortigueira M.D., Fractional Calculus for Scientists and Engineers, Springer 2011. 

25. Oldham K.B., Spanier J.: The Fractional Calculus, Academic Press: New York, 

1974. 

26. Ostalczyk P., Discrete fractional calculus, World Science Publ. Co., New Jersey, 

2016. 

27. Ostalczyk P.: Epitome of the fractional calculus: Theory and its Applications in 

Automatics. Wydawnictwo Politechniki Łódzkiej, Łódź (in Polish), 2008. 

28. Podlubny I.: Fractional Differential Equations. Academic Press: San Diego, 1999. 

29. Radwan A.G., Soliman A.M., Elwakil A.S., Sedeek A.; On the stability of linear 

systems with fractional-order elements. Chaos, Solitones and Fractals; 2009, 40 

(5): p. 2317-2328. 

30. Sajewski Ł: Descriptor fractional discrete-time linear system and its solution – 

comparison of three different methods, Challenges in Automation, Robotics and 

Measurement Techniques, Advances in Intelligent Systems and Computing, vol. 

440, 2016, p. 37-50. 

31. Sajewski Ł.: Descriptor fractional discrete-time linear system with two different 

fractional orders and its solution, Bull. Pol. Acad. Sci. Tech., vol. 64, no. 1, 2016, 

p. 15-20. 



114  T. Kaczorek 
 

32. Solteiro Pires E.J., Tenreiro Machado J.A., Moura Oliveira P.B.: Functional 

dynamics in genetic algorithms. Workshop on Fractional Differenation and its 

Application, 2006, 2: p. 414-419. 

33. Vinagre B.M., Monje C.A., Calderon A.J.: Fractional order systems and 

fractional order conltrol actions, Lecture 3 IEEE CDC'02 TW#2: Fractional 

calculus Applications in Automatic Control and Robotics, 2002. 

34. Xiang-Jun W., Zheng-Mao W., Jun-Guo L.: Stability analysis of a class of 

nonlinear fractional-order systems, IEEE Trans. Circuits and Systems-II, Express 

Briefs, vol. 55, no. 11, 2008, p. 1178-1182. 


