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STABILNOSC PRZEDZIALOWYCH DODATNICH DYSKRETNYCH
UKLADOW LINIOWYCH RZEDU CALKOWITEGO I NIECALKOWITEGO

Streszczenie. W pracy podano analize¢ stabilnosci przedziatlowych dodatnich
uktadow liniowych dyskretnych opisanych réwnaniami réznicowymi rzedu
catkowitego 1 niecatkowitego (ulamkowego). Uogdlniono twierdzenie
Kharitonova ( Charitonova) na dodatnie przedzialowe uktady liniowe dyskretne
rzedu catkowitego 1 niecatkowitego (utamkowego). Wykazano, ze:

1) przedzialowy dodatni wuklad x,, =4x, 4eR™, 4 <A4<4, jest stabilny
asymptotycznie wtedy 1 tylko wtedy gdy macierze 4, i=1,2 s3 macierzami
Schura,

2) przedziatlowy dodatni uktad jest stabilny asymptotycznie jezeli dolne
ograniczenia wspotczynnikow wielomianu charakterystycznego sa dodatnie,

3) przedzialowy dodatni uktad dyskretny linowy rzedu niecatkowitego jest
stabilny asymptotycznie wtedy 1 tylko wtedy gdy uktad dolnego ograniczenia jest
stabilny asymptotycznie.

STABILITY OF INTERVAL POSITIVE STANDARD AND FRACTIONAL
DISCRETE-TIME LINEAR SYSTEMS

Summary. The stability of interval positive discrete-time linear systems is
addressed. It 1s shown that:
1) The interval positive system x,,, = Ax,, A€ R7", 4, < A< A4, is asymptotically

stable if and only if the matrices A4,, i =1,2 are Schur matrices.

2) The interval positive system is asymptotically stable if the lower bounds of
coefficients of its characteristic polynomial are positive.

3) The interval positive fractional discrete-time linear systems are asymptotically
stable if and only if the lower bounds systems are asymptotically stable.

The classical Kharitonov theorem is extended to the interval positive fractional
linear systems

1. Introduction
A dynamical system is called positive if its state variables take nonnegative

values for all nonnegative inputs and nonnegative initial conditions. The positive linear
systems have been investigated in [1, 5, 11] and positive nonlinear systems in [6, 7, 9,
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17, 18]. Examples of positive systems are industrial processes involving chemical
reactors, heat exchangers and distillation columns, storage systems, compartmental
systems, water and atmospheric pollution models. A variety of models having positive
linear behavior can be found in engineering, management science, economics, social
sciences, biology and medicine, etc.

Mathematical fundamentals of the fractional calculus are given in the
monographs [24-28]. Fractional dynamical linear and nonlinear systems have been
investigated in [6, 8, 10, 13, 15, 18, 28-34].

Positive linear systems with different fractional orders have been addressed in [3,
12, 14, 22,31]. Descriptor (singular) linear systems have been analyzed in [9, 15, 16]
and the stability of a class of nonlinear fractional-order systems in [6, 18, 25].
Application of Drazin inverse to analysis of descriptor fractional discrete-time linear
systems has been presented in [8].Comparison of three method of analysis of the
descriptor fractional systems has been presented in [30]. Stability of linear fractional
order systems with delays has been analyzed in [2] and simple conditions for practical
stability of positive fractional systems have been proposed in [4]. The stability of
interval positive continuous-time and discrete-time linear systems have been addressed
in [20, 21].

In this paper the asymptotic stability of interval positive standard and fractional
discrete-time linear systems will be addressed.

The paper is organized as follows. In section 2 some basic definitions and
theorems concerning positive linear systems and polynomials with interval coefficients
are recalled. In section 3 the stability of positive interval linear systems described by
the state equation is investigated. In section 4 some basic definitions and theorems
concerning positivity and stability of fractional discrete-time linear systems are
recalled. Stability of the interval positive fractional linear systems is analyzed in
section 5. Convex linear combination of Schur polynomials and the stability of interval
positive discrete-time linear systems is investigated in section 6. Concluding remarks
are given in section 7.

The following notations will be used: R - the set of real numbers, ™" - the set
of nxm real matrices, R - the set of nxm real matrices with nonnegative entries

and R =R", M, - the set of nxn Metzler matrices (real matrices with nonnegative
off-diagonal entries), [, - the nxn identity matrix, for A=[aq;]eR™ and

B=[b;]e R™ inequality 4> B means a; >b, for i,j=12,..,n.

2. Preliminaries

Consider the autonomous continuous-time linear system
&)= Ax(1), 120, 2.1)
where x()eR” 1is the state vector and 4 € R"™".
Definition 2.1. [5, 11] The system (2.1) is called positive if x(#)eR’, >0 for any
initial conditions x, = x(0) e R’ .
Theorem 2.1. [5, 11] The system (2.1) is positive if and only if its matrix 4 is the
Metzler matrix.
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Definition 2.2. [5, 11] The positive system (2.1) is called asymptotically stable if
lim x(z) = 0 for all finite x(0) € R’.

Theorem 2.2. [5, 11] The positive system (2.1) is asymptotically stable if and only if
one of the equivalent conditions is satisfied:
1) All coefficient of the characteristic polynomial
det[/ s— Al=s"+a, s"" +..+as+aq, (2.2)
are positive, i.€. g, >0 for k=0,,...n—1.
2) All principal minors M, , i=1,....n of the matrix — 4 are positive, i.e.

— — T4 —dp —
M, =|-a,|>0, M, = >0, ..., M, =det[-4]>0. (2.3)
—dy —dy
3) There exists strictly positive vector ' =[4, A A1, 4, >0, k=1,...,n such that
AA<0 or A"21<0. (2.4)

If det A#0 then we may choose 1=-4"c, where ceR" is any strictly positive
vector.
Consider the set (family) of the n-degree polynomials
p,(s)=as"+a, 5" +.+as+a, (2.5a)
with the interval coefficients
a,<a,<a, i=0,1..n. (2.5b)
Using (2.5) we define the following four polynomials:
p..(8)=a,+as+ a_2s2 + cz_3s3 +a,st+as’+ ..
.— 2 3 4 5
2,,(8) .—%+als+azs +%S +%s +ags” +... 2.6)
P, () =a,+as+a,s’ +as’ +ast +as+..
D, (8) = a_o + chs +ta,s’ +as + a_454 + a_ss5 +...
Kharitonov Theorem: The set of polynomials (2.5) is asymptotically stable if and
only if the four polynomials (2.6) are asymptotically stable.
Proof'is given in [23].
Consider the autonomous discrete-time linear system
X, =Ax,,ieZ, ={0,,..} (2.7)
where x e R" is the state vector and 4 € R™"
Definition 2.3. [5, 11] The discrete-time linear system (2.7) is called (internally)
positive if x, e R", i € Z, for any initial conditions x, € R’ .
Theorem 2.3. [5, 11] The discrete-time linear system (2.7) is positive if and only if
Ae R (2.8)
Definition 2.4. [5, 11] The positive discrete-time linear system (2.7) is called
asymptotically stable if

limx, =0 for any x, e R’ . (2.9)

Theorem 2.4. The positive discrete-time linear system (2.7) is asymptotically stable if
and only if one of the following equivalent conditions is satisfied:
1) All coefficient of the polynomial
p,(z)=det[l (z+1)—Al=z"+a, 2" +..+az+a, (2.10)
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are positive, 1.e. ¢, >0 for i=0,1,...,n—1.

2) All principal minors of the matrix A=7 — A= [a_y.] are positive, i.e.
M, =|a,|>0, M, ="t D250, M, =det4>0. (2.11)
ay dy

3) There exists strictly positive vector ' =[4, A A], 4. >0, i=1,...,n such

that
AL< . (2.12)

If [A—1]eM, is asymptotically stable then we may choose A=[I —A4]'c, where

c e R’ is strictly positive.

3. Stability of positive interval linear system

Consider the interval positive linear discrete-time system

X,y = Ax; (3.1
where x, € R"1s the state vector and the matrix 4eR7™ 1s defined by
A £ A< 4, orequivalently 4€[A4,4,] (3.2)

Definition 3.1. The interval positive system (3.1) is called asymptotically stable if the
system is asymptotically stable for all matrices 4 R”" satisfying the condition (3.2).

By condition (2.12) of Theorem 2.4 the positive system (3.1) is asymptotically stable if
and only if there exists strictly positive vector A4 >0 such that (2.12) holds.

For two positive linear systems

X =Ax,, 4 R (3.3a)
and
Xy =Xy, Ay R (3.3b)
there exists a strictly positive vector 4 eR” such that
AA<A and 4,A< A (3.4)

if and only if the systems (3.3) are asymptotically stable.
Example 3.1. Consider the positive linear system (3.1) with the matrices

AI{OJ 0.2} AZ{M 0.1} (3.5)
03 03 04 0.5
Note that for A" =[1 1] we have
AIA{OJ 0.2 1}2 0.9 g 1 (3.62)
03 03]1] [06] |1
Azl{o.é 0.1 1}2 0.7 g 1 (3.6b)
04 05]1] |09] |1

Therefore, by the condition (2.12) of Theorem 2.4 the positive systems are
asymptotically stable.
Theorem 3.1. If the matrices 4, €R7" and 4, e R7" of positive systems (3.3) are
asymptotically stable then their convex linear combination

A=(1-k)4 +kA for 0<k<l1 (3.7)
is also asymptotically stable.
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Proof. By condition (2.12) of Theorem 2.4 if the positive linear systems (3.3) are
asymptotically stable then there exists strictly positive vector 1< R’ such that (3.4)
holds.
Using (3.7) and (3.4) we obtain

AL =[(1-k)A + kA, 1A= —-k) A A+ kA, A <(1—k)A+kAi=A for 0<k<1 (3.8)
Therefore, if the positive linear systems (3.3) are asymptotically stable and (3.4) holds
then their convex linear combination is also asymptotically stable. o
Theorem 3.2. The interval positive system (3.1) is asymptotically stable if and only if
the positive systems (3.3) are asymptotically stable.
Proof. By condition (2.12) of Theorem 2.4 the matrices 4, e R”", 4,eR"" are
asymptotically stable if and only if there exists a strictly positive vector 4 e R”, such
that (3.4) holds. The convex linear combination (3.7) satisfies the condition A1<0 if
and only if (3.4) holds. Therefore, the interval positive system (3.1) is asymptotically
stable if and only if the positive systems (3.3) are asymptotically stable. o
Example 3.2. Consider the interval positive linear system (3.1) with the matrices

4 {0.5 0.1 4 {0.8 0.2} (3.9)

0.2 0.3] 04 0.5
For the matrices (3.9) we choose 1=[0.95 0.85]" and we obtain

[0.5 0.1"0.95} {0.56} {0.95}
A= = <
02 0.3]085] |[0445| |0.85
{0.8 0.2"0.95} {0.93} {0.95}
A, A= = <
04 05]085] |[0.805] |0.85
Therefore, by Theorem 3.2 the interval positive system (3.1) with (3.9) is
asymptotically stable.

(3.10)

4. Fractional discrete-time systems

Consider the autonomous fractional discrete-time linear system

A'x,, =Ax,, 0<a<l,ieZ,, (4.1)
where
A'x, = chxw. , (4.2a)
Jj=1
(a o 1 for ;=0
¢, :(_I)J(j], (]J =Jala-1)...a-j+1) for j=12.. (4.2b)
J!

is the fractional a-order difference of x, and x, e R", u, e R" are the state and input

vectors and 4eR™".
Substitution of (4.2) into (4.1) yields
i+1
X, =A4,x — chxi_ﬁ] ,ieZ,, (4.3a)
=2
where
A, =A+1,«. (4.3b)
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Lemma 4.1.[19] If 0<a <1 then
1) —c, >0 for j=12,.. (4.4a)

2) ch =-1. (4.4b)
Jj=1
Definition 4.1. [19] The fractional system (4.1) is called (internally) positive if
x, € R", ieZ, for any initial conditions x, € R’ .
Theorem 4.1. [19] The fractional system (4.1) is positive if and only if

A, eM,. 4.5)
Definition 4.4. The fractional positive system (4.1) is called asymptotically stable if
limx, =0 forall x, e R . (4.6)

Theorem 4.4. [19] The fractional positive system (4.1) is asymptotically stable if and
only if one of the equivalent conditions is satisfied:
1) All coefficient of the characteristic polynomial
p.(2)=det[l (z+1)-A]=z"+a, 2" +..+az+a, 4.7)
are positive, 1.e. a, >0 for k=0,1,....n—1.
2) All principal minors of the matrix

a, .. a,
A=1-A=| M .. M (4.8)
_nl 5/1/1
are positive, i.e.
a, a, —_
la,|>0, " "?|>0,..., det 4 >0. (4.9)
21 Ay
3) There exists strictly positive vector ' =[4, A A1, 4, >0, k=1,...,n such that
[4-1]A<0. (4.10)

Theorem 4.3. The fractional positive system (4.1) with (4.3b) is asymptotically stable
if and only if there exists a strictly positive vector A >0 such that

AL <0 (4.11)
Proof. Note that the positive fractional system (4.3) can be considered as a positive
linear system with increasing to infinity numbers of delays. It is well-known [19] that
the stability of positive discrete-time linear systems depends only on the sum of state
matrices

A=4,-Y ¢/, (4.12)
From (4.4b) we have "
~Se,=1-a. (4.13)
Substituting (4.13) into (4.12) we obtair;=2
A=A, +(l-a)l,=A+1,, (4.14)

since 4, =A+1,a.
Applying the condition (4.10) to (4.14) we obtain (4.11). o
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Example 4.1. Consider the fractional discrete-time system (4.1) for « =0.6 with the

matrix
-04 0.2
A= . (4.15)
03 -05
The fractional system is positive since the matrix
0.2 0.2
A,=A+La= e R (4.16)
0.3 0.1

has positive entries.
The positive fractional system is asymptotically stable since for A* =[1 1] we have

-04 02 |1 -0.2
Az{ }{H }o (4.17)
03 =051 -0.2
and the condition (4.11) is satisfied.

5. Fractional interval positive linear continuous-time systems

Consider the interval fractional positive discrete-time linear system (4.1) with the
interval matrix 4 e R”" defined by
A <A< 4, orequivalently 4€[4,,4,]. (5.1
Definition 5.1. The interval fractional positive system with (5.1) is called
asymptotically stable if the system is asymptotically stable for all matrices 4 e R""
belonging to the interval [4,,4,].
By condition (4.11) of Theorem 4.3 the interval fractional positive system is
asymptotically stable if and only if there exists strictly positive vector 4> 0 such that
AA <0 forall A€[A4,4,].
Definition 5.2. The matrix
A=(-k)A4 +kA, 0<k<1, 4 eR™, 4, e R"™ (5.2)
1s called the convex linear combination of the matrices 4; and A4,.
Theorem 5.1. The convex linear combination (5.2) is asymptotically stable if and only
if the matrices 4, e R™" and 4, € R™" are asymptotically stable.
Proof. If the matrices 4, e R™" and A4, e R"™" are asymptotically stable then by

condition (4.11) of Theorem 4.3 there exists strictly positive vector 1R’ such that

AA<0 forI=12. (5.3)
In this case using (5.2) and (5.3) we obtain
A2 =[(1—k) A +kAJA=(1—k)AA+kAA <0 for 0<k<I. (5.4)

Therefore, if the matrices 4,, / = 1,2 are asymptotically stable then the convex linear
combination (5.2) is also asymptotically stable. Necessity follows immediately from
the fact that k£ can be equal to zero and one. O

Theorem 5.2. The interval fractional positive system (4.1) with (5.1) is asymptotically
stable if and only if the matrices 4, € R™" and A4, € R™" are Schur matrices.

Proof. By condition (4.11) of Theorem 4.3 the matrices 4, e R and 4, e R"™ are
Schur matrices if and only if there exists strictly positive vector A e€R” such that (5.3)
holds. The convex linear combination (5.2) satisfies the condition A4 < 0if and only if
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(5.3) holds. Therefore, the interval fractional positive systems (4.1) with (5.1) is
asymptotically stable if and only if 4, e R™ and 4, € R™" are Schur matrices. O
Example 5.1. Consider the interval fractional positive linear systems (4.1) with the

matrices
-0.3 0.1 -0.5 03
A = , A, = (5.5)
0.05 -04 0.2 -0.6

It is easy to check that for A" =[1 1] we have
-03 0.1 |1 -0.2
A= = <0
0.05 -04]|1 -0.35
-05 03 |1 -0.2
A, A= = <0
02 -0.6]1 -0.4
Therefore, by Theorem 5.2 the interval fractional positive system (4.1) with (5.1) is
asymptotically stable.

(5.6)

6. Convex linear combination of Schur polynomials and stability of interval
fractional positive linear systems

Definition 6.1. The polynomial

p(z2)=bz"+b, 2" +..+bz+b, (6.1)
is called Schur polynomial if its zeros z,, /=1,...,n satisfy the condition
|z| <1 for I=1,...,n. (6.2)
Definition 6.2. The polynomial
p(2)=(1-k)p,(z)+kp,(z) for k €[0,1] (6.3)
is called convex linear combination of the polynomials
p,(z2)=b, 2" +bi,HZ"_1 +o.tb z+b,,, i=12. (6.4)

Theorem 6.1.[21] The convex linear combination of the Hurwitz polynomials is also a
Hurwitz polynomial.
For positive linear systems we have the following relationship between Hurwitz and
Schur polynomials.
Theorem 6.2. The polynomial
p(s)=as" +a, s"" +..+as+a, (6.5)
1s Hurwitz and the polynomial
p(z2)=bz"+b, 2" +..+bz+b, (6.6)
is Schur polynomial if and only if their coefficients a; and b; i =0,L,...,n are related by
a,=by+b +..+b,,
a,=b +2b,+...+nb,,

<

(6.7)
=b _,+nb,
b

n n*

QS 8

n—1
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Proof. It is well-known [19] that for positive linear discrete-time and continuous-time
systems the zeros z,, /=1,...,n of the polynomial (6.6) and the zeros s,, /=1,...,n of
the polynomial (6.5) are related by
z,=s,+1,1=1,.,n. (6.8)
Substituting z=s+1 into the polynomial (6.6) we obtain
b(s+1)"+b, _(s+1)" +..+b(s+)+b,=as"+a, s +..+as+a, (6.9)
and it is easy to verify that the coefficients a; and b; i =0,1,...,n are related by (6.7).
The polynomial (6.5) is Hurwitz if and only if a@; > 0 for i =0,1....,n and the polynomial
(6.6) is Schur if and only if b, > 0 for i =0,L,...,n. From (6.7) it follows that b; > 0,
i=0,1,...,n implies @;> 0 for i =0,1,....,n. O
Example 6.1. The polynomial
p(2)=2z>+0.62+0.08 (6.10)
of positive discrete-time linear system is Schur polynomial since its zeros are:
z,=-02, z,=-04.
Substituting z =s+1 into (6.10) we obtain
p(s)=(s+1)°+0.6(s +1)+0.08 =5 +2.65 +1.68 (6.11)
with the zeros s, =—1.2, s, =—1.4. Therefore, the polynomial (6.11) is Hurwitz.
Theorem 6.3. The interval positive fractional discrete-time linear system with the
characteristic polynomial (6.6) is asymptotically stable if the lower b, and the upper b;
, i =0,1,...,n bounds of its coefficients are positive.
Proof. From (6.7) it follows that b, >0, i=0,l,....,n implies a@; > 0 for i=0,1,...,n and
the characteristic polynomial (6.5) is Hurwitz. By Theorem 2.2 the continuous-time
system is asymptotically stable. Similar result we obtain for the upper bound.
Therefore, the interval fractional positive discrete-time system (6.6) is asymptotically
stable if the lower and upper bound of the coefficients are positive. O

Remark. 6.1. The equalities (6.7) can be used to compute the lower and upper bounds
of the coefficients a;, i =0,1,....n of polynomial (6.5) knowing the lower and upper

bounds of the coefficients b;, i =0,1....,n of polynomial (6.6).
Example 6.2. Consider the characteristic polynomial

p(z)=b,z° +b,z+b, (6.12)
of positive fractional discrete-time systems with the interval coefficients
1<b, <3, 2<b <3, 1<h, <4. (6.13)
The equivalent characteristic polynomial of continuous-time system has the form
p(s)=b,(s+1)> +b(s+1)+b, =a,s’ +a,s +a, (6.14)
where
a,=b,, a,=b +2b,, a,=b,+b +b,. (6.15)

Therefore, the interval coefficients of characteristic polynomial of continuous-time
system are

1<a,<3, 4<a,<9, 4<q,<10. (6.16)
By Theorem 6.3 the interval positive discrete-time linear system with (6.12) is
asymptotically stable since the lower bounds (6.16) are positive.
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7. Concluding remarks

The asymptotic stability of interval positive linear discrete-time systems has been
addressed. It has been shown that:
The interval positive system (3.1) is asymptotically stable if and only if the matrices
4,, i=1,2 are Schur matrices (Theorem 3.2, 5.2). The convex linear combination of the

Hurwitz polynomials is also the Hurwitz polynomial (Theorems 6.1).

The interval positive system is asymptotically stable if the lower bounds of
coefficients of the polynomial of system are positive (Theorem 6.3). The
considerations have been illustrated by numerical examples of positive interval
discrete-time systems. The considerations can be extended to continuous-time positive
standard and fractional linear systems. An open problem is an extension of the
considerations to nonpositive standard and fractional discrete-time and continuous-
time linear systems.
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