
AUTOMATYZACJA PROCESÓW DYSKRETNYCH 2018

Adam GAŁUSZKA

Politechnika Śląska

PLAN RÓWNOLEGŁY ODPORNY JAKO ROZWIĄZANIE ZADANIA

PROGRAMOWANIA LINIOWEGO

Streszczenie. Klasyczne planowanie w Sztucznej Inteligencji jest wniosko-

waniem mającym na celu znalezienie sekwencji akcji pozwalającej na

osiągnięcie sytuacji docelowej wychodząc z danej sytuacji początkowej. W pracy

przedstawiono problem planowania równoległego odpornego, tj. planowania

w sztucznej inteligencji przy założeniach: niekompletności informacji o stanie

początkowym problemu, braku dostępności sensorów umożliwiających redukcję

tej niekompletności oraz możliwości wykonywania wielu akcji równocześnie.

Poszukiwanie rozwiązania w takim przypadku jest trudne obliczeniowo. Celem

zwiększenia efektywności obliczeniowej zaproponowano transformację do

Zadania Programowania Liniowego, którą zilustrowano przykładem.

PARALLEL CONFORMANT PLANNING AS A LINEAR PROGRAMMING

PROBLEM

Summary. Planning in Artificial Intelligence is a problem of finding a sequence

of actions that transforms a given initial state of the problem to a desired goal

situation. Conformant planning is a problem of searching for a non-conditional

plan for a problem with an uncertain initial state. A parallel plan is a plan in

which some actions can be executed in parallel, usually leading to a decrease of

the plan execution time. In this work we consider a problem of finding a parallel

conformant plan which is computationally difficult. To avoid this difficulty, a

transformation of the problem to Linear Programming Problem, illustrated by an

example, is proposed.

1. Introduction

Planning as Artificial Intelligence problem is formulated as a searching process

leading to a sequence of agent’s actions (called a plan) that transforms an initial agent

environment (called initial state of a planning problem) to a desired goal situation (e.g.

Russell and Norwig 2009, Skrzypczyk 2010, Palacios and Haffner 2009, Rosa et al.

2011, Galuszka and Swierniak 2010).

The problem becomes more complicated, if information about the modeled world

is not sufficient to determine all facts necessary to describe an initial state of the world.

Then, we say that the initial state of the problem is uncertain but can be represented

70 A. Gałuszka

by a set of possible initial states. A plan for solving such problem may take the form of

actions that are executed conditionally, based on new information emerging during the

search for the plan. This approach is called conditional planning (Russell and Norwig

2009, Weld et al. 1998).

In some cases, information from sensors may be unavailable e.g. sensors are

damaged or broken down, receiving sensory information is too expensive or

dangerous. Then, it is reasonable to search for a plan that is a solution to the planning

problem independently of possible initial states. This approach is called conformant

planning (also Russell and Norwig 2009, Weld et al. 1998). Both conditional and

conformant planning are more difficult to solve than a classical planning (Bonet 2010).

The cases, in which more than one action can be applied in one planning step, i.e.

some actions can be performed simultaneously, constitute a large class of important

planning problems. Such problem formulation allows to model multi-agent and multi-

robot environments and is called parallel planning (e.g. Ghooshchi et al. 2015).

Combining conformant and parallel planning leads to a problem, in which many

agents interact in an uncertain environment with no possibility of performing sensing

actions. Finding a solution to a parallel conformant planning problem is more difficult

than for previous problems. To avoid this difficulty, in the paper we propose a

heuristics for transformation of the problem to a Linear Programming Problem,

illustrated by an example.

Contribution. In the paper a polynomial transformation of planning problem to

LP problem, proposed in (Bylander 1997) and developed in (Galuszka 2011), is

extended to handle parallel conformant planning. The problem of transforming

conformant planning problems with single action in each planning step to LP has been

studied earlier (Galuszka et al. 2015).

In chapter 2 planning and conformant planning problems are formulated, in

chapter 3 the transformation of conformant planning to LP as well as an example are

presented.

2. Preliminaries

Following Bylander (1994) it is assumed that classical planning problem is

denoted by  (also called STRIPS planning) and consists of four sets ={C, O, I, G},

where:

- C is a finite set of conditions,

- O is a finite set of actions, where each action oO takes the form c
+
, c

-
  c+, c-,

where:

 c
+
  C are called positive preconditions,

 c
-
  C are called negative preconditions,

 c+  C are called positive postconditions,

 c-  C are called negative postconditions,

- I  C is an initial state,

Parallel Conformant Planning ... 71

- G = {G+, G-} is a goal situation, where G+  C are positive conditions (i.e. are

true) and G-  C are negative conditions (i.e. are false).

In order to include information that some conditions are unknown (assume k

conditions can be true or false) in the description of the current problem state, one can

introduce so called k-states proposed by Baral et al. (2000). In simple terms, the k-

state is a pair (s, ), where s is the current problem state, and  is a set that consists of

all possible initial states I. For unknown initial state the set  consists of all states s,

for which:

- condition c  C is true in the initial state (i.e. c  I),

- condition c  C is false (i.e. c  I),

- if it is unknown whether condition c  C is true or false in the initial state, then the

set  includes both states, for which this condition is true and false, respectively.

The initial state I can be potentially any state from states included in set . It

follows that planning problem with incomplete information about initial state takes the

form:

  = (C, O, , G). (1)

The result of applying action to the current state is presented below, is based on

(Baral 2000) and is adopted to STRIPS problem.

For action o, k-state is described by a set {Result(S,<o>), Result(,<o>)}, where

Result(S,<o>) is the same like incase with complete information, e.g.:

Result(S, { }) = S,

Result(S, {o}) = (S  c+) \ c- if c
+
  S  c

-
  S = ; S in opposite case,

Result(S, <o1, o2,....., on >) = Result(Result(S, <o1>), <o2,...., on>),

Result(, <o>) = { Result(S’,<o>) S’ }.

The plan C = <o1, o2,....., on > solves conformant planning problem, if Result(,

C) = G. Since all actions in C are ordered, C is called a total order conformant

plan.

The partial-order conformant plan is denoted as POC = {SetC, π}, where

SetC = {o1, o2,....., on } is the set of actions, and π is the non-returnable partial order

defined on SetC (compare Backstrom 1998). So, a partial-order conformant plan is a

compact representation of a set of possible total ordered plans.

The parallel partial-order conformant plan is denoted as PPOC = {SetC, π, #},

where {SetC, π } is POC, while # is a symmetrical relation, defined on the set SetC. #

 (π  π
-1

) is called a non-concurrency relation and it indicates which actions cannot

be applied in parallel.

Example. To illustrate a parallel conformant planning problem consider the

following simple bomb in the toilet problem (Son Tran Cao et al. 2005) with one

action containing conditional effects:

72 A. Gałuszka

Dunk(P): preconditions: package(P), bomb(B)

effects: if in(P, B) then defused(B), (2)

meaning that if there is a bomb B and there is a package P then action dunk causes that

bomb B is defused if it was in package P. So if there is no bomb in package, the action

dunk has no effects.

Action model in formula (2) is different than classical STRIPS action. It is

caused by a fact that actions effects are formulated conditionally with general schema:

actions causes set1_of_conditions if set2_of_conditions. Please note that an action

defined in such way has no preconditions but action effects are formulated

conditionally. It implies that preconditions are indirectly defined by effects, so action

Dunk is equivalent to two classical STRIPS actions:

Dunk1(P): pre: package(P), bomb(B), in(P, B); eff: defused(B)

Dunk2(P): pre: package(P), bomb(B), not(in(P, B)); eff: no effects

Now, let us consider the following problem BT with two possible initial states

(bomb is in package 1 or in package 2):

 BT = (C BT, O BT,  BT, G BT), (3)

where:

C BT = {package(P1),package(P2),bomb(B),in(P1,B),in(P2,B), defused(B)},

O BT = { Dunk },

 BT = {{ package(P1),package(P2),bomb(B),in(P1,B)},

 {(package(P1),package(P2),bomb(B),in(P2,B)}},

G BT = { defused(B) }.

The conformant plan that solves the  BT problem is:

CBT = < Dunk(P1), Dunk(P2)> or CBT = < Dunk(P2), Dunk(P1)>. (4)

The partial-order conformant plan that solves the  BT problem is:

 POCBT = { Dunk(P2), Dunk(P1)}. (5)

If actions in POCBT can be performed in parallel (#BT = Ø), then POCBT =

PPOCBT and the problem is solved in one step. End of example.

3. Translation to Linear Programming problem

Following (Bylander 1997), the transformation from planning to Linear

Programming is based on mapping of conditions and operators in each plan step to

Parallel Conformant Planning ... 73

variables. Truth values of conditions are mapped to ”0” and “1” for the planning

without incompleteness, and to any values between “0” and “1” for planning with

incomplete information. The objective function reaches the maximum, if the goal

situation is true in the last step of planning.

If l is the number of planning steps and w is the number of possible initial world

states then variables of problem (3) for conditions are:

c1(i) = package(P1,i), c2(i) = package(P2,i), c3(i) = bomb(B,i),

c4
w
(i) = in(P1,B,i)

 w
, c5

 w
(i) = in(P2,B,i)

 w
, c6

 w
(i) = defused(B,i)

 w
,

i = 0, 1, …l, w = 1, 2, (6)

for actions:

 o1
w
(i) = Dunk1(P1,i)

w
, o2

w
(i) = Dunk2(P1,i)

w
, o3

w
(i) = Dunk1(P2,i)

w
,

 o4
w
(i) = Dunk2(P2,i)

w
, i = 0, 1, …l-1, w = 1, 2. (7)

The initial state is a disjunction of two possibilities. It is modelled by a set of

equality constraints:

 package(P1,0) = 1, package(P2,0) = 1, bomb(B,0) = 1,

 in(P1,B,0)
 1

 = 1, in(P2,B,0)
 1

 = 0, defused(B,0)
 1

 = 0,

 in(P1,B,0)
2
 = 0, in(P2,B,0)

 2
 = 1, defused(B,0)

 2
 = 0, (8)

Goal state G BT is reached if condition (defused B) is true in last planning step in

each world, so the objective function of LP is:

Max  f = defused(B,l)
1
 + defused(B, l)

 2
. (9)

The planning problem is solved, if the optimal value of f is equal to 2, meaning

that the condition in both worlds is true. It leads to following formulation of

optimization problem: Find minimal number of planning steps l, such that f = 2.

The set of constraints is given by:

- actions can be applied if preconditions are true (these are inequality

constraints), so basing on formula (3) we have:

package(P1,i)  Dunk1(P1,i)
w
 + Dunk2(P1,i)

w
,

package(P2,i)  Dunk1(P2,i)
w
 + Dunk2(P2,i)

w
,

r * bomb(B,i)  Dunk1(P1,i)
w
 + Dunk2(P1,i)

w
 + Dunk1(P2,i)

w
 + Dunk2(P2,i)

w
,

in(P1,B,i)
 w

  Dunk1(P1,i)
w
,

in(P2,B,i)
 w

  Dunk1(P2,i)
w
,

(1 - in(P1,B,i)
 w

)  Dunk2(P1,i)
w
,

(1 - in(P2,B,i)
 w

)  Dunk2(P2,i)
w
, i = 0, 1, 2, …l-1,w=1,2 , (10)

74 A. Gałuszka

where r is a natural number indicating how many actions can be performed in parallel

(in our example r = 2),

- changes of variables for conditions due to action application (these are equality

constraints), so basing on formula (3) we have:

defused(B, i + 1)
 w

 = defused(B,i)
 w

 + Dunk1(P1,i)
w
 + Dunk1(P2,i)

w

 i = 0, 1, 2, …l-1, w = 1,2. (11)

The equality constraint (11) should be studied more carefully. If actions

Dunk1(P1,i)
w
 and Dunk1(P2,i)

w
 are applied in parallel in the same planning step, then

the value of condition defused(B, i + 1)
 w

 becomes infeasible. In this case, one should

introduce an additional balancing variable for each condition in each planning step to

avoid infeasibility:

defused(B, i + 1)
 w

 + defused(B, i + 1)b
 w

 =

 = defused(B,i)
 w

 + Dunk1(P1,i)
w
 + Dunk1(P2,i)

w
,

i = 0, 1, 2, …l-1, w = 1, 2. (12)

Basing on formulas (6) to (12) it is easy derive general formulas for any problem

(1). Finally, the LP problem takes the following form:

 (13)

Table 1 presents the optimal solution of the problem (13) as well as two

additional test problems with possible initial states given by set of equalities (14) and

(15):

 in(P1,B,0)
 1

 = 1, in(P2,B,0)
 1

 = 0, defused(B,0)
 1

 = 0,

 in(P1,B,0)
2
 = 1, in(P2,B,0)

 2
 = 1, defused(B,0)

 2
 = 0; (14)

 in(P1,B,0)
 1

 = 1, in(P2,B,0)
 1

 = 0, defused(B,0)
 1

 = 0,

 in(P1,B,0)
2
 = 0, in(P2,B,0)

 2
 = 0, defused(B,0)

 2
 = 0. (15)

In the first one (14) there is a bomb in first package but it is uncertain whether it

is in the second package, in second one (15) there is no bomb in second package but it

is uncertain whether it is in first package.

It should be noted that values of variables for actions are binary integer, so the

solution presented in table 1 can be directly interpreted as a plan:

PPOCBT = { Dunk(P2), Dunk(P1)}.

In the opposite case, one should apply additional heuristics or methods that lead

to a binary integer solution (see e.g. Galuszka 2011).

10

max







x

bxA

bAxxf

eqeq

T

x

Parallel Conformant Planning ... 75

Table 1

Optimal solution xopt for problems (14,15,16)

4. Conclusion and future work

Important planning problems are those where more than one agent interacts with

the problem environment simultaneously. They arise in multi-agent and multi-robot

environments. It leads to changes in constraints (10). Additionally, it is assumed here

that maximal number of actions applied to current problem state is m. It can occur

when m agents act on the same problem state or one agent is able to perform m actions

at a time. It should be noted that for some problem states it may be impossible to

perform m actions at a time, so to the set of inequalities (10) now (i.e. for |O| = n)

should be extended by additional formula: o1 + o2 +.....+ on ≤ m.

It should be noted that in real-life problems application of an action to a problem

state does not always lead to expected effects. It is particularly important in cases

where action outcomes are uncertain, as well, and when a condition that is determined

can become undetermined. It leads to changes in constraints (12) and will be

considered in future works.

Acknowledgment. This work has been supported by Institute of Automatic Control BK

grant 02/010/Bk_17/0060 in the year 2018.

76 A. Gałuszka

REFERENCES

1. Baral Ch., Kreinovich V., Trejo R.: Computational complexity of planning and

approximate planning in the presence of incompleteness. Artificial Intelligence,

122, 2000, p. 241-267.

2. Bonet B.: Conformant plans and beyond: Principles and complexity. Artificial

Intelligence 174, 2010, p. 245-269.

3. Bylander, T.: The Computational Complexity of Propositional STRIPS Planning.

Artificial Intelligence, 69, 1994, p. 165-204.

4. Bylander T.: A Linear Programming Heuristic for Optimal Planning. In

AAAI97/IAAI-97 Proceedings, 1997, p. 694-699.

5. Galuszka A., Swierniak A.: Planning in Multi-agent Environment Using Strips

Representation and Non-cooperative Equilibrium Strategy. Journal of Intelligent

and Robotic Systems, Vol. 58, Issue 3, 2010, p. 239-251.

6. Gałuszka A.: On transformation of STRIPS planning to linear programming.

Archives of Control Sciences, Volume 21(LVII), No. 3, 2011, p. 227-251.

7. Gałuszka A., Ilewicz W., Olczyk A.: On Translation of Conformant Action

Planning to Linear Programming, 20th Int. Conf. on Methods and Models in

Automation and Robotics (MMAR), ISBN: 978-1-4799-8701-6, 2015, p. 353-

357.

8. Ghooshchi N.G., Namazi M., Newton M.A., Sattar A.: Transition Constraints for

Parallel Planning. Proceedings of the Twenty-Ninth AAAI Conference on

Artificial Intelligence, 2015, p. 3268-3274.

9. Oglietti M.: Understanding planning with incomplete information and sensing.

Artificial Intelligence 164, 2005, p. 171-208.

10. Palacios H., Geffner H.: Compiling Uncertainty Away in Conformant Planning

Problems with Bounded Width. Journal of Artificial Intelligence Research 35,

2009, p. 623-675.

11. Rintanen J.: Constructing Conditional Plans by a Theorem-Prover. Journal of

Artificial Intelligence Research, 10, 1999, p. 323-352.

12. Rosa T., Jimenez S., Fuentetaja R., Barrajo D.: Scaling up Heuristic Planning

with Relational Decision Trees. Journal of Artificial Intelligence Research, 40,

2011, p. 767-813.

13. Russell S.J., Norvig P.: Artificial Intelligence, A Modern Approach. 3
rd

 Edition.

Prentice Hall Series in Artificial Intelligence, Berkeley, 2009.

14. Skrzypczyk K.: Time optimal tracking a moving target by a mobile vehicle 

game theoretical approach, Przegląd Elektrotechniczny (Electrical Review), R.

86 NR 3/2010, p. 211-215

15. Son T.C., Phan H.T., Gelfond M., Morales A.R.: Conformant planning for

domains with constraints: a new approach. In Proceedings of the 20th national

conference on Artificial intelligence  Volume 3 (AAAI'05), Anthony Cohn

(Ed.), Vol. 3. AAAI Press, 2005, 1211-1216.

16. Weld D.S., Anderson C.R., Smith D.E.: Extending Graphplan to Handle

Uncertainty & Sensing Actions. Proc. 15th National Conf. on AI, 1998, p. 897-

904.

