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PLAN RÓWNOLEGŁY ODPORNY JAKO ROZWIĄZANIE ZADANIA 

PROGRAMOWANIA LINIOWEGO 

 

Streszczenie. Klasyczne planowanie w Sztucznej Inteligencji jest wniosko-

waniem mającym na celu znalezienie sekwencji akcji pozwalającej na 

osiągnięcie sytuacji docelowej wychodząc z danej sytuacji początkowej. W pracy 

przedstawiono problem planowania równoległego odpornego, tj. planowania  

w sztucznej inteligencji przy założeniach: niekompletności informacji o stanie 

początkowym problemu, braku dostępności sensorów umożliwiających redukcję 

tej niekompletności oraz możliwości wykonywania wielu akcji równocześnie. 

Poszukiwanie rozwiązania w takim przypadku jest trudne obliczeniowo. Celem 

zwiększenia efektywności obliczeniowej zaproponowano transformację do 

Zadania Programowania Liniowego, którą zilustrowano przykładem. 

 

PARALLEL CONFORMANT PLANNING AS A LINEAR PROGRAMMING 

PROBLEM 

 

Summary. Planning in Artificial Intelligence is a problem of finding a sequence 

of actions that transforms a given initial state of the problem to a desired goal 

situation. Conformant planning is a problem of searching for a non-conditional 

plan for a problem with an uncertain initial state. A parallel plan is a plan in 

which some actions can be executed in parallel, usually leading to a decrease of 

the plan execution time. In this work we consider a problem of finding a parallel 

conformant plan which is computationally difficult. To avoid this difficulty, a 

transformation of the problem to Linear Programming Problem, illustrated by an 

example, is proposed. 

 

1. Introduction  

 

Planning as Artificial Intelligence problem is formulated as a searching process 

leading to a sequence of agent’s actions (called a plan) that transforms an initial agent 

environment (called initial state of a planning problem) to a desired goal situation (e.g. 

Russell and Norwig 2009, Skrzypczyk 2010, Palacios and Haffner 2009, Rosa et al. 

2011, Galuszka and Swierniak 2010).  

The problem becomes more complicated, if information about the modeled world 

is not sufficient to determine all facts necessary to describe an initial state of the world. 

Then, we say that the initial state of the problem is uncertain  but can be represented 
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by a set of possible initial states. A plan for solving such problem may take the form of 

actions that are executed conditionally, based on new information emerging during the 

search for the plan. This approach is called conditional planning (Russell and Norwig 

2009, Weld et al. 1998).  

In some cases, information from sensors may be unavailable e.g. sensors are 

damaged or broken down, receiving sensory information is too expensive or 

dangerous. Then, it is reasonable to search for a plan that is a solution to the planning 

problem independently of possible initial states. This approach is called conformant 

planning (also Russell and Norwig 2009, Weld et al. 1998). Both conditional and 

conformant planning are more difficult to solve than a classical planning (Bonet 2010). 

The cases, in which more than one action can be applied in one planning step, i.e. 

some actions can be performed simultaneously, constitute a large class of important 

planning problems. Such problem formulation allows to model multi-agent and multi-

robot environments and is called parallel planning (e.g. Ghooshchi et al. 2015). 

Combining conformant and parallel planning leads to a problem, in which many 

agents interact in an uncertain environment with no possibility of performing sensing 

actions. Finding a solution to a parallel conformant planning problem is more difficult 

than for previous problems. To avoid this difficulty, in the paper we propose a 

heuristics for transformation of the problem to a Linear Programming Problem, 

illustrated by an example.  

Contribution. In the paper a polynomial transformation of planning problem to 

LP problem, proposed in (Bylander 1997) and developed in (Galuszka 2011), is 

extended to handle parallel conformant planning. The problem of transforming 

conformant planning problems with single action in each planning step to LP has been 

studied earlier (Galuszka et al. 2015). 

In chapter 2 planning and conformant planning problems are formulated, in 

chapter 3 the transformation of conformant planning to LP as well as an example are 

presented. 

 

2. Preliminaries 

 

Following Bylander (1994) it is assumed that classical planning problem is 

denoted by  (also called STRIPS planning) and consists of four sets ={C, O, I, G}, 

where: 

- C is a finite set of conditions, 

- O is a finite set of actions, where each action oO takes the form c
+
, c

-
  c+, c-, 

where: 

 c
+
  C are called positive preconditions, 

 c
-
  C are called negative preconditions, 

 c+  C are called positive postconditions, 

 c-  C are   called negative postconditions, 

- I  C is an initial state, 
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- G = {G+, G-} is a goal situation, where G+  C are positive conditions (i.e. are 

true) and G-  C are negative conditions (i.e. are false). 

In order to include information that some conditions are unknown (assume k 

conditions can be true or false) in the description of the current problem state, one can 

introduce so called k-states proposed by Baral et al. (2000). In simple terms, the k-

state is a pair (s, ), where s is the current problem state, and  is a set that consists of 

all possible initial states I. For unknown initial state the set  consists of all states s, 

for which: 

- condition  c  C is true in the initial state (i.e. c  I), 

- condition  c  C is false (i.e. c  I), 

- if it is unknown whether condition c  C is true or false in the initial state, then the 

set  includes both states, for which this condition is true and false, respectively. 

The initial state I can be potentially any state from states included in set .  It 

follows that planning problem with incomplete information about initial state takes the 

form: 

  = (C, O, , G).           (1) 

  

The result of applying action to the current state is presented below, is based on 

(Baral 2000) and is adopted to STRIPS problem.  

For action o, k-state is described by a set {Result(S,<o>), Result(,<o>)}, where 

Result(S,<o>) is the same like incase with complete information, e.g.: 

 

Result( S, { }) = S,  

Result( S, {o}) =  (S  c+) \ c-  if c
+
  S  c

-
  S = ; S  in opposite case, 

Result( S, <o1, o2,....., on >) = Result( Result( S, <o1>), <o2,...., on>),         

Result(, <o>) = { Result(S’,<o>) S’ }.  

 

The plan C = <o1, o2,....., on > solves conformant planning problem, if  Result(, 

C) = G.  Since all actions in C are ordered, C is called a total order conformant 

plan. 

The partial-order conformant plan is denoted as POC = {SetC, π}, where  

SetC = {o1, o2,....., on } is the set of actions, and π is the non-returnable partial order 

defined on SetC (compare Backstrom 1998). So, a  partial-order conformant plan is a 

compact representation of a set of possible total ordered plans.  

The parallel partial-order conformant plan is denoted as PPOC = {SetC, π, #}, 

where {SetC, π } is POC, while # is a symmetrical relation, defined on the set SetC. # 

 (π  π
-1

) is called a non-concurrency relation and it indicates which actions cannot 

be applied in parallel.  

Example. To illustrate a parallel conformant planning problem consider the 

following simple bomb in the toilet problem (Son Tran Cao et al. 2005) with one 

action containing conditional effects: 
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Dunk(P): preconditions:  package(P), bomb(B) 

effects: if in(P, B) then defused(B),        (2) 

 

meaning that if there is a bomb B and there is a package P then action dunk causes that 

bomb B is defused if it was in package P. So if there is no bomb in package, the action 

dunk has no effects. 

Action model in formula (2) is different than classical STRIPS action. It is 

caused by a fact that actions effects are formulated conditionally with general schema: 

actions causes set1_of_conditions  if  set2_of_conditions. Please note that an action 

defined in such way has no preconditions but action effects are formulated 

conditionally. It implies that preconditions are indirectly defined by effects, so action 

Dunk is equivalent to two classical STRIPS actions:  

  

Dunk1(P): pre: package(P), bomb(B), in(P, B); eff: defused(B) 

Dunk2(P): pre: package(P), bomb(B), not(in(P, B)); eff: no effects  

 

Now, let us consider the following problem BT with two possible initial states 

(bomb is in package 1 or in package 2):  

 BT = (C BT, O BT,  BT, G BT ),         (3) 

 

where: 

C BT = {package(P1),package(P2),bomb(B),in(P1,B),in(P2,B),  defused(B)},  

O BT = { Dunk }, 

 BT = {{ package(P1),package(P2),bomb(B),in(P1,B)}, 

 {( package(P1),package(P2),bomb(B),in(P2,B)}},  

G BT = { defused(B) }. 

 

The conformant plan that solves the  BT problem is: 

CBT = < Dunk(P1), Dunk(P2)> or CBT = < Dunk(P2), Dunk(P1)>.  (4) 

 

The partial-order conformant plan that solves the  BT problem is: 

 POCBT = { Dunk(P2), Dunk(P1)}.        (5) 

 

If actions in POCBT can be performed in parallel (#BT = Ø), then  POCBT = 

PPOCBT and the problem is solved in one step. End of example. 

 

3. Translation to Linear Programming problem 

 

Following (Bylander 1997), the transformation from planning to Linear 

Programming is based on mapping of conditions and operators in each plan step to 
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variables. Truth values of conditions are mapped to ”0” and “1” for the planning 

without incompleteness, and to any values between “0” and “1” for planning with 

incomplete information. The objective function reaches the maximum, if the goal 

situation is true in the last step of planning. 

If l is the number of planning steps and w is the number of possible initial world 

states then variables of problem (3) for conditions are: 

 

c1(i) = package(P1,i), c2(i) = package(P2,i), c3(i) = bomb(B,i),  

c4
w
(i) = in(P1,B,i)

 w
, c5

 w
(i) = in(P2,B,i)

  w
, c6

 w
(i) = defused(B,i)

 w
,  

i = 0, 1, …l, w = 1, 2,         (6) 

for actions: 

 o1
w
(i) = Dunk1(P1,i)

w
, o2

w
(i) = Dunk2(P1,i)

w
, o3

w
(i) = Dunk1(P2,i)

w
,  

 o4
w
(i) = Dunk2(P2,i)

w
, i = 0, 1, …l-1, w = 1, 2.     (7) 

 

The initial state is a disjunction of two possibilities. It is modelled by a set of 

equality constraints: 

 

 package(P1,0) = 1, package(P2,0) = 1, bomb(B,0) = 1,  

 in(P1,B,0)
 1

 = 1, in(P2,B,0)
  1

 = 0, defused(B,0)
 1

 = 0, 

 in(P1,B,0) 
2
 = 0, in(P2,B,0)

 2
 = 1, defused(B,0)

 2
 = 0,     (8) 

 

Goal state G BT is reached if condition (defused B) is true in last planning step in 

each world, so the objective function of LP is:  

 

Max  f = defused(B,l)
1
 + defused(B, l)

 2
.      (9) 

 

The planning problem is solved, if the optimal value of f is equal to 2, meaning 

that the condition in both worlds is true. It leads to following formulation of 

optimization problem: Find minimal number of planning steps l, such that f = 2.  

The set of constraints is given by: 

- actions can be applied if preconditions are true (these are inequality 

constraints), so basing on formula (3) we have: 

 

package(P1,i)  Dunk1(P1,i)
w
 + Dunk2(P1,i)

w
, 

package(P2,i)  Dunk1(P2,i)
w
 + Dunk2(P2,i)

w
, 

r * bomb(B,i)  Dunk1(P1,i)
w
 + Dunk2(P1,i)

w
 + Dunk1(P2,i)

w
 + Dunk2(P2,i)

w
, 

in(P1,B,i)
 w

  Dunk1(P1,i)
w
, 

in(P2,B,i)
 w

  Dunk1(P2,i)
w
, 

(1 - in(P1,B,i)
 w

 )  Dunk2(P1,i)
w
, 

(1 - in(P2,B,i)
 w

 )  Dunk2(P2,i)
w
, i = 0, 1, 2, …l-1,w=1,2 ,     (10) 
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where r is a natural number indicating how many actions can be performed in parallel 

(in our example r = 2),  

- changes of variables for conditions due to action application (these are equality 

constraints), so basing on formula (3) we have: 

 

defused(B, i + 1)
 w

 = defused(B,i)
 w

 + Dunk1(P1,i)
w
 + Dunk1(P2,i)

w
 

 i = 0, 1, 2, …l-1, w = 1,2.         (11) 

 

The equality constraint (11) should be studied more carefully. If actions 

Dunk1(P1,i)
w
 and Dunk1(P2,i)

w
 are applied in parallel in the same planning step, then 

the value of condition defused(B, i + 1)
 w

 becomes infeasible. In this case, one should 

introduce an additional balancing variable for each condition in each planning step to 

avoid infeasibility:  

 

defused(B, i + 1)
 w

 + defused(B, i + 1)b
 w

 =  

  = defused(B,i)
 w

 + Dunk1(P1,i)
w
 + Dunk1(P2,i)

w
,  

i = 0, 1, 2, …l-1, w = 1, 2.         (12) 

 

Basing on formulas (6) to (12) it is easy derive general formulas for any problem 

(1). Finally, the LP problem takes the following form: 

           (13) 

Table 1 presents the optimal solution of the problem (13) as well as two 

additional test problems with possible  initial states given by set of equalities (14) and 

(15):  

 in(P1,B,0)
 1

 = 1, in(P2,B,0)
  1

 = 0, defused(B,0)
 1

 = 0, 

 in(P1,B,0) 
2
 = 1, in(P2,B,0)

 2
 = 1, defused(B,0)

 2
 = 0;    (14) 

 in(P1,B,0)
 1

 = 1, in(P2,B,0)
  1

 = 0, defused(B,0)
 1

 = 0, 

 in(P1,B,0) 
2
 = 0, in(P2,B,0)

 2
 = 0, defused(B,0)

 2
 = 0.    (15) 

 

In the first one (14) there is a bomb in first package but it is uncertain whether it 

is in the second package, in second one (15) there is no bomb in second package but it 

is uncertain whether it is in first package.  

It should be noted that values of variables for actions are binary integer, so the 

solution presented in table 1 can be directly interpreted as a plan:  

PPOCBT = { Dunk(P2), Dunk(P1)}. 

 

In the opposite case, one should apply additional heuristics or methods that lead 

to a binary integer solution (see e.g. Galuszka 2011). 

10

max







x

bxA

bAxxf

eqeq

T

x
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Table 1 

Optimal solution xopt for problems (14,15,16) 

 

 

4. Conclusion and future work  

 

Important planning problems are those where more than one agent interacts with 

the problem environment simultaneously. They arise in multi-agent and multi-robot 

environments. It leads to changes in constraints (10). Additionally, it is assumed here 

that maximal number of actions applied to current problem state is m. It can occur 

when m agents act on the same problem state or one agent is able to perform m actions 

at a time. It should be noted that for some problem states it may be impossible to 

perform m actions at a time, so to the set of inequalities (10) now (i.e. for |O| = n ) 

should be extended by additional formula: o1 + o2 +.....+ on ≤ m.  

It should be noted that in real-life problems application of an action to a problem 

state does not always lead to expected effects. It is particularly important in cases 

where action outcomes are uncertain, as well, and when a condition that is determined 

can become undetermined. It leads to changes in constraints (12) and will be 

considered in future works. 
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